Calendar
Topics are subject to update.
Class schedule
- Date
-
- Event
-
- Assignment
- Reading
- Sep/4
-
- Lecture 1 Introduction and foundations
-
- HW0 out
- [M1]
Ch 1
- Sep/9
-
- Lecture 2 Empirical risk minimization, maximum likelihood
-
- HW1 out
- [M1]
Ch 4.2
- Sep/11
-
- Lecture 3 Bayesian learning
-
- [M1]
Ch 4.6.1–4.6.4
- Sep/16
-
- Lecture 4 Linear regression
-
- HW0 due
HW1 due
HW2 out - [M1]
Ch 11.1–11.3
- HW0 due
- Sep/18
-
- Lecture 5 Uncertainty quantification, regularizers
-
- [M1]
Ch 11.7.1–11.7.5
- Sep/23
-
- Lecture 6 Features, kernels
-
- [M1]
Ch 2.1.2, 11.3–11.3.1, 17.1, 4.5–4.5.3
- Sep/25
- Sep/30
-
- Lecture 8 Classification, intro to optimization
-
- HW2 due
HW3 out - [M1] Ch 10
- HW2 due
- Oct/2
- Oct/7
-
- Lecture 10 Generalization II
-
- HW3 due
MP1 out - [Ba] Ch 5.4
- [M1] Ch 8.4
- [SB]/[SSS] Ch 2.3, 3.1-3.2, 4.1-4.2
- HW3 due
- Oct/9
-
- Lecture 11 Boosting
-
- [SB]/[SSS] Ch 6, 28
- Oct/14
-
- Lecture 12 Neural networks I: intuition, activations, depth, and width
-
- Oct/16
-
- Lecture 13 Neural networks II: optimization
-
- MP1 due
- Oct/21
-
- Lecture 14 Neural networks III: kernels versus feature learning
-
- HW4 out
- Oct/23
-
- Midterm 7PM–9PM (No lecture)
-
- Oct/28
-
- Lecture 15 Neural networks IV: other architectures
-
- Oct/30
-
- Lecture 16 Neural networks V: overparameterization
-
- Nov/4
-
- Lecture 17 Temporal and spatial learning
-
- HW4 due
HW5 out
- HW4 due
- Nov/6
-
- Lecture 18 Missing data
-
- Nov/11
-
- Holiday! No lecture
-
- Nov/13
-
- Lecture 19 Dimensionality reduction I
-
- Nov/18
-
- Lecture 20 Dimensionality reduction II
-
- HW5 due
HW6 out
- HW5 due
- Nov/20
-
- Lecture 21 Attention & transformers
-
- Nov/25
-
- Lecture 22 Representation learning I
-
- HW6 due
MP2 out
- HW6 due
- Nov/27
-
- Holiday! No lecture
-
- Dec/2
-
- Lecture 23 Representation learning II
-
- MP2 due
HW7 out
- MP2 due
- Dec/4
-
- Lecture 24 Some ways to do machine learning wrong
-
- Dec/9
-
- Review
-