6.7900 Machine Learning
(Fall 2023)

Lecture 17:
Reinforcement Learning Cont’d
(supporting slides)

Shen Shen

* Value-based RL
- (Tabular) Q-learning

* Policy-based RL
- What does the policy gradient do?
- Policy gradient derivation
- Policy gradient estimates
- Variance reduction
- Constant Baselines
- Temporal structure

- Actor-critic intro

References

> More RL-flavored presentation:

- Reinforcement Learning: An Introduction, Sutton and Barton; The MIT Press, 2018.
Chapter 6 and |3

- Seminal papers referenced on slides.

- Some slides adapted from: Philip Isola, Pieter Abbeel, and Andrej Karpathy

http://incompleteideas.net/book/RLbook2020trimmed.pdf

Unknown
Model

Multi-Armed Reinforcement
Bandits Learning

Known
Model

State space: 9 cells

Actions space: {North,
South, East,West}

Discount y = 0.9

Stochastic Markov Decision
Optimization Process

Actions Don’t Actions Change
Impact State State

Example: Grid World .
? (in RL)

(Almost deterministic) Transitions:

- Normally, actions take us deterministically to the “intended” state.

E.g., in state (l,1), action “North” gets us to state (l,2)
- If an action would take us out of this world, stay put
- In state (3,2), action “North” leads to two possible next state:
- = B chance ends in (3,3)
¥ & chance ends in (2,3)

Deterministic Rewards:

- State (3,3), any action gets reward

- State (3,2), any action gets reward

- Any other (state, action) pairs get reward 0

Reinforcement Learning

Markev_Decision P
RL

> &’:a state space which contains all possible states s of the system.

- & an action space which contains all possible actions a an agent can take.

> PGssya)-the-probability of transition-from-states-to-s-if-actiona is taken.
* R(s,a):a function that takes in the (state and action) and returns a real-valued reward.

Sometimes, also:
» Sp: initial state.
> Obijective version (may involve a ¥y € [0,1]: discount factor (details later), and/or T:

horizon. Details later).

RL—MDP Goal

> Find a policy 7 : § — A, such that:

IE[Z:O Y'R(s,, n(s,) | sy = s] is maximized for all s

Model-Based RL

- Collect trajectories to estimate the transition and rewards

model (system identification in control)

N 1 K L,—1
- P (S, ‘ 3 CZ) — N(s, a) z —1 Ztil 1 (Sk,t = 3, ak,t = 4, Sk,t+1 — S,)

© 31623
~ | K I —1 § — I:D)irec": Et aver1age of 50 runs
— k — — D — _ _ DirectRL: run 2
- R(Sa Cl) N(s, a) Zkzl ztzl 1 (Sk,t S, Uy ¢ CZ) Vi k % 10000| - DirectRL:run3.
- Where 1(-) is indicator function and N(s, a) is the count of trajectories % 3162 |
starting from (s, a) 1000
- Then solve the estimated MDP 316 o M
- Typically more sample efficient than the so-called model-free RL 10
. . . . 32 I 1 1 1 1 1]]]
* Inherit limitations of MDP exact methods, e.g., can be very O 1020 %0 4050 60 70 80 %0 100

computationally expensive |Atkeson and Santamaria, 96]

https://www.semanticscholar.org/paper/A-comparison-of-direct-and-model-based-learning-Atkeson-Santamar%C3%ADa/936a67aad36a9d9a7799237f0499d2f588d6e8ba

A Glance of RL Algorithms

)

\

Given the Model

J

s ™
RL Algorithms
_ Y,
{ 3)
Model-Free RL Model-Based RL
J Y, _ k y,

} { . 3 i

Policy Optimization Q-Learning Learn the Model

_ y, Y, _ y, _
() () ()
Policy Gradient €<—— 2 2 —> DQN —>» World Models
& J _) DDPG (— _ & J
() Y) (()

A2C / A3C <— N —> C51 —> I2A
_ J _) TD3 (— _ _ J
() S) (()
PPO <— (" R —> QR-DQN —> MBMF
& J _) SAC (_ _ & J
() Y) () ()
TRPO < —> HER —> MBVE

_ J _ W, _ J

—{ AlphaZero J

|Credit: Open Al Spinningup]

v

v

v

Q Learning

Recall that using Q-value iteration, we update our estimate of Q via
Onew(sa) < E[R(s,)] +y ¥ p (s'| s,a) max O (s',)

Without access to P and R, how would we be able to use this!?

One idea is to sample a state and action pair (s, a), simulate, observe s’, r, and
then Qnew(s,a) < r+ymaxQ (s’,a’)
a/

But this is too “current sample dependent” — assumes the observed r is the
only possible reward, assumes the observed s’ is the only possible next state.

S0, instead, ‘smooth” the update with a step-size o

(Tabular) Q Learning

Q-LEARNING(S, A, Sg,Y, &, €)
1 Q(s,a)=0forses,ac A

2 s = sg/ (e.g., so can be drawn randomly from §)
3 while True:
4 a = select_action(s, Q)
5 r,s’ = execute(a)
6 Qnew(s,a) + (1 —x)Q(s,a) + x(r+vymaxy Q(s’,a’))
8 if |Q — Qnewl < €: / (or, if reached some max iteration)
9 return Qpew

10 Q < Qnew

Q-learning Comments

- Face the same exploration versus exploitation dilemma as in bandits (due to
unknown model)

- selection_action in line4 often uses epsilon-greedy; many other options available

- Rearranging terms in line 6, the update can also be interpreted via temporal-
difference (TD) error: Q,, (s, a) < Q(s,a) + a(target — Q(s, a))])
> In TD-error form, the update looks quite like SGD.

> Closely connects to Fitted Q-learning (coming up in future lecture).

Q-LEARNING(S, A, so,7Y, &, €)

> Xk L.

I Qls.a)—0Oforses,acA Can converge to true O if:

2 s = so // (e-g., so can be drawn randomly from 5) - All states and actions visited infinity often
3 while True:

4 a = select action(s, Q) - Step-size « are annealed (i.e. if a;, k being the
5 T,S' — execute(a) ... iterati nn mber fline 6 SatiSf .

6 Qnew(s; @) + (1 —a)Q(s, a) + ofr +ymaxqs Q(s’,a’)) ' on nu O e ,2 y:

7 B Y a=o00and), a; <)

. | . o k=1 k=1

8 if |Q — Qnew| < €: / (or, if reached some max iteration)

9 return Qpew
10 Q « Qnew

Policy Optimization

action
a4,

state

- Parameterize policy by ¢ and directly try max,E [Y ¥R (s, q,) | m]

- Stochastic policy class #z4(a | s) : probability of action a in state s
- Discrete «: e.g. ny(a | s) softmax
- Continuous «: e.qg. ny(a | s) Gaussian with mean/variance parameterized by @

- Smoothes out the optimization problem

- Also encourages exploration

Why Policy Optimization

- Often » can be simpler than Q or V

- e.g. lots of = are roughly good

 Vls): doesn't prescribe actions

. m*(s) = arg max E[R(s,a)] + yzs, p(s’|s, a)V*(s')

- Would still need world model (and compute one-step Bellman update)
- Q: need to be able to efficiently solve argmax_ O(s, a)

 7+(s) = argmax Q¥(s,@)

- Can be challenging for continuous / high-dimensional action spaces

- Maybe makes sense to direct optimize policy end-to-end

- So how do we do this?

Prediction y Ground truth label y | 0SS

K K
fo: X =R —Zykbg@k

dolphin ||l dolphin =t
cat |§ cat
grizzly bear |J grizzly bear
f angel fish ||l angel fish
chameleon ||l (+) chameleon
clown fish || INEGEE clown fish
iguana | iguana
elephant I elephant

0 1 0 1 0

- If explicit "good” state-action pair is given, also supervised learning.
- Behavior cloning or imitation learning.
- But what if no explicit guide?

raw pixels hidden layer

-
Song v 4

[Adapted from Andrej Karpathy: http://karpathy.github.io/2016/05/31/rl/]

Policy gradients: Run a policy for a while. See what actions led to good return.
Increase thelir likelihood.

UP DOWN -® DOWN -® DOWN -® UP »® WIN
DOWN’. UP »® UP »® | OSE
DOWN"DOWN* DOWN* UP ~® | OSE
DOWN». UP »® UP -® WIN

[Adapted from Andrej Karpathy: http://karpathy.github.io/2016/05/31/rl/]

Eventual return

_.p t10points

I 0 points

Policy output Action i ¥ +10points

o’.::;’: """""" » + 1 OO pO|ntS

)
““““
Setets®

Ilanny :
................... » +10 points

A 110 points

Policy output

Action

Down

— DOoWN

Fventual return

“““ > U points
0“
‘0
. .
AR < 0 points
0"
L 4
L 4
L4
““““ » +10 points
0"
| "
.... .0.. '
00:0:.0: ““““““ ' O p Ol n tS
‘:::::: ‘‘‘‘
FEERCA A Y A
,’,,,l‘ lllllllllllll .
.................. > O points
’0
0“
‘0
0" -
0‘ -
0‘ -
0”
.0

0..
.
v,

A 4110 points

Approximated via lots of sampling

l

. Average return after EXpected
Policy output . .
taking each action return
I Up
I O —~u
O 1 0 +10

Approximated via lots of sampling

l

. Average return after EXpected
Policy output . .
taking each action return
I Up
. _ @ DOWH - E _>
O 1 0 +10

How is this gradient update done though (as we don’t have the world model Pong)?

Likelihood Ratio Policy Gradient

~ VWe overload notation:
- Let 7 denote a state-action sequence:T = sy, dg, S1, Ay, - - -
- Let R(7) denote the sum of discounted rewards on 7: R(7) = Ztth (st, at)
- W.lLo.g. assume R(7) is deterministic in 7

- Let P(7;0) denote the probability of trajectory 7z induced by x,

- Let U(0) denote the objective: U(f) = -[Ztth (St, at) | 7]

- Our goal is to find : max, U(f) = max 927 P(t; O)R(7)

Likelihood Ratio Policy Gradient
Taking the gradient w.r.t. 8 gives

V,UB) =V, Y, Pz OR() VO = 2 P@ORE)
=} V,P(1;0)R(7) But P(1:60) = | | P (5,41 | 50@) - 7 (a1 5,)]
- =0 - . - —
t 1t i
i Z P(T, 9) V P(T Q)R(T) ransition POILICY
- P(t; 0) om
‘ Use identity
. VHP(T, 6) _ VHPH(T)
i ; Hno P(z;0) K© VoPo) = Pyl7) Po(7)
= py(7) Vylog py(7)

— Z P(t; 0) V(gl()g P(7; 0)R(7)

Likelihood Ratio Policy Gradient

V,U(6) = Z P(z; 0) V log P(t; O)R(7)

Approximate with the empirical estimate for m sample traj. under policy 7,

V,U(O) ~ g

L3 V,log P (+7;6) R (<)
m =1

Valid even when:
- Reward function discontinuous and/or unknown
- Discrete state and/or action spaces

Likelihood Ratio Gradient

V,U@O) ~ § = %Z Volog P (z%;0) R (1)
i=1

- Checks out with our intuition that:
- Increase likelihood of trajectory with big reward

- Decrease prob of trajectory with negative reward

- How do we evaluate V,logP (7\;0) though?

Didn’t we say we don’t know the transition?
P(7;0) = HP (SH_l | s, at) .+ Ty (at | St)]

=0 ~

transition policy

Decompose a trajectory

Vylog P (7;0) = Vglog[HP (St+1 | s, at) - Ty (at | St>]
=0 ~

transition policy

=V, Z log P (SH_I | s, at) + Z log 7, (at | St>

=0 t=0
= VQZ log 7, (at | St)
=0
=) Vologmy (a, | s,)
=0

no transition model required,

Likelihood Ratio Gradient - Summary

- The following expression provides us with an unbiased estimate of the gradient,

and we can compute it without access to the world model:
] & . .
6 =— Y V,logP (zV;0) R (7
= 2 VoloeP (<750) R (+)

- Here

Vylog P (r;0) = 2 V,log r, (at | St>
=0

Nno need of dynamics

- Unbiased estimator E[¢] = V,U(0), but very noisy.

Variance Reduction - Discount

Blame each action assuming that its effects have
exponentially decaying impact into the future.

Discounted rewards
021 024 0.27 -0.81 -0.9 -1 0 0

UP DOWN UP UP DOWN DOWN_ o DOWN UP
® @ ~® @ -® @ -® @ @
A v
Reward +1.0 reward -1.0

- In the extreme, if discount of 0, almost no variance at all.
- S0 discount can be both a problem definition, or a hyper-parameter.

Variance Reduction - Baseline

- Sample estimate, unbiased but can be very noisy
| « . .
VUO) ~ 90 = — Vo log P (7V:0) R (7
(0) ~ g - lzzl glog P () R ()
- Can we keep unbiasedness but reduce variance? Yes!

- Subtract an appropriate baseline can keep the unbiasedness

E [V, log P(z: O))] VU@B) ~ § = i Z VQIOgP (T(i); 6’) (R (T(i)) — b)
i =1

=) P(1:0) Vylog P(z; 0)b

— 2 P(t;0) V;z(.z)g) b

=) VyP(z:0)b

_ vg(ZP(f)b> = b%(ZP(r)) = bx0

[[Williams, REINFORCE paper,1992]

Variance-reduction Baselines

- Constant b=—Y" R (")

_ _ > (Vglog P(r(i);e))zR(r(i)) [Greensmith, Bartlett, Baxter,
Optimal constant baseline: b = JMLR 2004 for variance
' y (VQIOgP(T(i)'9)>2 reduction techniques. |

- Estimated state-dependent value functions: b (s,) = V" (s,)

N\
o~
\

Le., VU@ ~ g =— Y, V,logP (+:0) (R (0) - V7(s)
m

= e —

- We'll discuss methods on how to estimate V* (s,) later.

- This kind of “value” baseline very roughly gets us to actor-critic methods.

Variance Reduction - Temporal Structure

- Current gradient estimate:

:%i Vylog P (:6) (R () -)

1
m

i M:

7 N\

H-1 H-1
Z Vgl()gﬂ (i) | St(i))> (Z R (St(i), at(i)) — b)

=0

m [—
&z(z V,log 1, (a

=1 =0

m H-—1

L5 S (5

=1 =0

[Policy Gradient Theorem: Sutton et al 1999;
GPOMDP: Bartlett & Baxter, 2001; Survey: Peters &
Schaal, 2006]

Estimation of V* (coming up later)

- State-dependent expected return:b (s,) = E [r,+ 1y + rpa+ ... + ry_y| = V7 (s))

- Increase the prob of action proportionally to how much its returns are better

than the expected return under the current policy

- Can’t exactly solve for V*; again need to estimate. How?

- Either collect z,,...,7z,, and regress against empirical return:

2
b\ g — arg;mnz)IED I (Vd) (s) — (Z R (s, u;g))))

- Or similar to fitted Q-learning, do fitted V-learning:

Dyl < ngn Z

(s,u,s',r)

r+ V() = V()

2

2

[See: Greensmith, Bartlett, Baxter, JIMLR 2004 for variance reduction technigues.]

Algorithm 1 “Vanilla” policy gradient algorithm
Initialize policy parameter ¢, baseline b
for iteration=1,2,... do
Collect a set of trajectories by executing the current policy
At each timestep in each trajectory, compute
the return R, = tT,;: ~v*~tr,, and
the advantage estimate A, = R, — b(s;).
Re-fit the baseline, by minimizing ||b(s:) — R:||?,
summed over all trajectories and timesteps.
Update the policy, using a policy gradient estimate g,
which is a sum of terms Vylog 7(a; | s;, H)At
end for

Thanks!

Questions?

