# 6.7900 Machine Learning (Fall 2023)

Lecture 17:
Reinforcement Learning Cont'd
(supporting slides)
Shen Shen

### Outline

- Value-based RL
  - (Tabular) Q-learning
- Policy-based RL
  - What does the policy gradient do?
  - Policy gradient derivation
  - Policy gradient estimates
  - Variance reduction
    - Constant Baselines
    - Temporal structure
    - Actor-critic intro

### References

- More RL-flavored presentation:
  - Reinforcement Learning: An Introduction, Sutton and Barton; The MIT Press, 2018. Chapter 6 and 13
- Seminal papers referenced on slides.
- Some slides adapted from: Philip Isola, Pieter Abbeel, and Andrej Karpathy

# Reinforcement Learning

Unknown Model

> Known Model

| Multi-Armed  | Reinforcement   |
|--------------|-----------------|
| Bandits      | Learning        |
| Stochastic   | Markov Decision |
| Optimization | Process         |

Actions Don't Impact State

Actions Change State

#### **Example: Grid World**

(in RL)



(Almost deterministic) Transitions:

- Normally, actions take us deterministically to the "intended" state. E.g., in state (1,1), action "North" gets us to state (1,2)
- If an action would take us out of this world, stay put
- In state (3,2), action "North" leads to two possible next state:
- chance ends in (3,3)
- chance ends in (2,3)

State space: 9 cells
Actions space: {North,
South, East, West}
Discount  $\gamma = 0.9$ 

Deterministic Rewards:

- State (3,3), any action gets reward
- State (3,2), any action gets reward
- Any other (state, action) pairs get reward 0

#### Markov Decision Process RI

- $\mathcal{S}$ : a state space which contains all possible states s of the system.
- ·  $\mathscr{A}$ : an action space which contains all possible actions a an agent can take.
- P(s'|s,a): the probability of transition from state s to s' if action a is taken.
- R(s,a): a function that takes in the (state and action) and returns a real-valued reward.

#### Sometimes, also:

- $s_0$ : initial state.
- Objective version (may involve a  $\gamma \in [0,1]$ : discount factor (details later), and/or T: horizon. Details later).

#### RL MDP Goal

Find a policy  $\pi: S \to A$ , such that:

$$\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, \pi(s_{t}) \mid s_{0} = s\right] \text{ is maximized for all } s_{0}$$

### Model-Based RL

- Collect trajectories to estimate the transition and rewards model (system identification in control)
  - $\hat{P}\left(s' \mid s, a\right) = \frac{1}{N(s, a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k 1} 1\left(s_{k, t} = s, a_{k, t} = a, s_{k, t+1} = s'\right)$
  - $\hat{R}(s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k-1} 1 \left( s_{k,t} = s, a_{k,t} = a \right) r_{t,k}$
  - Where  $1(\,\cdot\,)$  is indicator function and N(s,a) is the count of trajectories starting from (s,a)
- Then solve the estimated MDP
- Typically more sample efficient than the so-called model-free RL
- Inherit limitations of MDP exact methods, e.g., can be very computationally expensive



[Atkeson and Santamaría, 96]

# A Glance of RL Algorithms



# **Q** Learning

- Recall that using Q-value iteration, we update our estimate of Q via  $Q_{\text{new}}(s, a) \leftarrow \mathbb{E}[R(s, a)] + \gamma \sum_{s'} p\left(s' \mid s, a\right) \max_{a'} Q\left(s', a'\right)$
- $^{\bullet}$  Without access to P and R, how would we be able to use this?
- One idea is to sample a state and action pair (s, a), simulate, observe s', r, and then  $Q_{\text{new}}(s, a) \leftarrow r + \gamma \max_{a'} Q(s', a')$
- But this is too "current sample dependent" assumes the observed r is the only possible reward, assumes the observed s' is the only possible next state.
- So, instead, "smooth" the update with a step-size  $\alpha$   $Q_{\text{new}}(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha(r+\gamma \max_{a'}Q(s',a'))$  target

# (Tabular) Q Learning

```
Q-Learning(S, A, s_0, \gamma, \alpha, \epsilon)
 1 Q(s, a) = 0 for s \in S, a \in A
 2 s = s_0 // (e.g., s_0 can be drawn randomly from S)
     while True:
          a = select_action(s, Q)
                                                                                 target
          r, s' = execute(a)
           Q_{\text{new}}(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha(r + \gamma \max_{\alpha'} Q(s', a'))
           s \leftarrow s'
           if |Q - Q_{new}| < \epsilon: // (or, if reached some max iteration)
 8
 9
                 return Q<sub>new</sub>
10
```

### **Q-learning Comments**

- Face the same exploration versus exploitation dilemma as in bandits (due to unknown model)
- selection\_action in line4 often uses epsilon-greedy; many other options available
- Rearranging terms in line 6, the update can also be interpreted via temporal-difference (TD) error:  $Q_{new}(s,a) \leftarrow Q(s,a) + \alpha(\text{target} Q(s,a))]$
- In TD-error form, the update looks quite like SGD.
- · Closely connects to Fitted Q-learning (coming up in future lecture).

```
Q-Learning(S, A, s_0, \gamma, \alpha, \varepsilon)

1 Q(s, a) = 0 for s \in S, a \in A

2 s = s_0 // (e.g., s_0 can be drawn randomly from S)

3 while True:

4 a = \text{select\_action}(s, Q)

5 r, s' = \text{execute}(a)

6 Q_{\text{new}}(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha(r + \gamma \max_{a'} Q(s', a'))

7 s \leftarrow s'

8 if |Q - Q_{\text{new}}| < \varepsilon: // (or, if reached some max iteration)

9 \text{return } Q_{\text{new}}

10 Q \leftarrow Q_{\text{new}}
```

- Can converge to true  $Q^*$  if:
  - All states and actions visited infinity often
  - Step-size  $\alpha$  are annealed (i.e. if  $\alpha_k$ , k being the iteration number of line 6, satisfy:

$$\sum_{k=1}^{\infty} \alpha_k = \infty \text{ and } \sum_{k=1}^{\infty} \alpha_k^2 < \infty)$$

# Policy Optimization



- Parameterize policy by  $\theta$  and directly try  $\max_{\theta} \mathbb{E}\left[\sum \gamma^t R\left(s_t, a_t\right) \mid \pi_{\theta}\right]$
- Stochastic policy class  $\pi_{\theta}(a \mid s)$ : probability of action a in state s
  - Discrete  $\mathscr{A}$ : e.g.  $\pi_{\theta}(a \mid s)$  softmax
  - Continuous  $\mathscr{A}$ : e.g.  $\pi_{\theta}(a \mid s)$  Gaussian with mean/variance parameterized by  $\theta$
  - Smoothes out the optimization problem
  - Also encourages exploration

### Why Policy Optimization

- Often  $\pi$  can be simpler than Q or V
  - e.g. lots of  $\pi$  are roughly good
- V(s): doesn't prescribe actions

$$\pi^*(s) = \arg\max_{a} \left[ \mathbb{E}[R(s, a)] + \gamma \sum_{s'} p(s'|s, a) V^*(s') \right]$$

- Would still need world model (and compute one-step Bellman update)
- Q: need to be able to efficiently solve  $\arg \max_a Q(s, a)$

$$-\pi^*(s) = \arg\max_a Q^*(s, a)$$

- Can be challenging for continuous / high-dimensional action spaces
- Maybe makes sense to direct optimize policy end-to-end
- So how do we do this?



- If explicit "good" state-action pair is given, also supervised learning.
- Behavior cloning or imitation learning.
- But what if no explicit guide?



[Adapted from Andrej Karpathy: http://karpathy.github.io/2016/05/31/rl/]

**Policy gradients**: Run a policy for a while. See what actions led to good return. Increase their likelihood.



[Adapted from Andrej Karpathy: http://karpathy.github.io/2016/05/31/rl/]

### Eventual return



### Eventual return



#### Approximated via lots of sampling



#### Approximated via lots of sampling



How is this gradient update done though (as we don't have the world model Pong)?

# Likelihood Ratio Policy Gradient

- We overload notation:
  - Let  $\tau$  denote a state-action sequence:  $\tau = s_0, a_0, s_1, a_1, \dots$
  - Let  $R(\tau)$  denote the sum of discounted rewards on  $\tau: R(\tau) = \sum_t \gamma^t R\left(s_t, a_t\right)$
  - W.l.o.g. assume  $R(\tau)$  is deterministic in  $\tau$
  - Let  $P(\tau;\theta)$  denote the probability of trajectory au induced by  $\pi_{\theta}$
  - Let  $U(\theta)$  denote the objective:  $U(\theta) = \mathbb{E}[\sum_t \gamma^t R\left(s_t, a_t\right) \mid \pi_{\theta}]$

• Our goal is to find  $\theta$ :  $\max_{\theta} U(\theta) = \max_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau)$ 

# Likelihood Ratio Policy Gradient

Taking the gradient w.r.t.  $\theta$  gives

$$\begin{split} \nabla_{\theta} U(\theta) &= \nabla_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau) \\ &= \sum_{\tau} \nabla_{\theta} P(\tau; \theta) R(\tau) \\ &= \sum_{\tau} \frac{P(\tau; \theta)}{P(\tau; \theta)} \nabla_{\theta} P(\tau; \theta) R(\tau) \\ &= \sum_{\tau} P(\tau; \theta) \frac{\nabla_{\theta} P(\tau; \theta)}{P(\tau; \theta)} R(\tau) \\ &= \sum_{\tau} P(\tau; \theta) \nabla_{\theta} \log P(\tau; \theta) R(\tau) \end{split}$$

$$U(\theta) = \sum_{\tau} P(\tau; \theta) R(\tau)$$

But 
$$P(\tau; \theta) = \prod_{t=0}^{\infty} P(s_{t+1} \mid s_t, a_t) \cdot \pi_{\theta}(a_t \mid s_t)$$
transition policy

Use identity

$$\nabla_{\theta} p_{\theta}(\tau) = p_{\theta}(\tau) \frac{\nabla_{\theta} p_{\theta}(\tau)}{p_{\theta}(\tau)}$$
$$= p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau)$$

# Likelihood Ratio Policy Gradient

$$\nabla_{\theta} U(\theta) = \sum_{\tau} P(\tau; \theta) \nabla_{\theta} \log P(\tau; \theta) R(\tau)$$

Approximate with the empirical estimate for m sample traj. under policy  $\pi_{\theta}$ 

$$\nabla_{\theta} U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \log P\left(\tau^{(i)}; \theta\right) R\left(\tau^{(i)}\right)$$

#### Valid even when:

- Reward function discontinuous and/or unknown
- Discrete state and/or action spaces

### Likelihood Ratio Gradient

$$\nabla_{\theta} U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \log P\left(\tau^{(i)}; \theta\right) R\left(\tau^{(i)}\right)$$

- Checks out with our intuition that:
  - Increase likelihood of trajectory with big reward
  - Decrease prob of trajectory with negative reward



- How do we evaluate  $\nabla_{\theta} \log P\left(\tau^{(i)}; \theta\right)$  though?
  - Didn't we say we don't know the transition?

$$P(\tau; \theta) = \prod_{t=0}^{t} P\left(s_{t+1} \mid s_{t}, a_{t}\right) \cdot \pi_{\theta}\left(a_{t} \mid s_{t}\right)]$$
transition policy

### Decompose a trajectory

$$\nabla_{\theta} \log P(\tau; \theta) = \nabla_{\theta} \log \left[ \prod_{t=0}^{t} P\left(s_{t+1} \mid s_{t}, a_{t}\right) \cdot \pi_{\theta}\left(a_{t} \mid s_{t}\right) \right]$$
transition policy

$$= \nabla_{\theta} \left[ \sum_{t=0}^{t} \log P\left(s_{t+1} \mid s_{t}, a_{t}\right) + \sum_{t=0}^{t} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right) \right]$$

$$= \nabla_{\theta} \sum_{t=0}^{\infty} \log \pi_{\theta} \left( a_t \mid s_t \right)$$

$$= \sum_{t=0}^{\infty} \nabla_{\theta} \log \pi_{\theta} \left( a_{t} \mid s_{t} \right)$$
no transition model required,

# Likelihood Ratio Gradient - Summary

• The following expression provides us with an unbiased estimate of the gradient, and we can compute it without access to the world model:

$$\hat{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \log P\left(\tau^{(i)}; \theta\right) R\left(\tau^{(i)}\right)$$

Here

$$\nabla_{\theta} \log P(\tau; \theta) = \sum_{t=0}^{\infty} \nabla_{\theta} \log \pi_{\theta} \left( a_{t} \mid s_{t} \right)$$
no need of dynamics

· Unbiased estimator  $E[\hat{g}] = \nabla_{\theta} U(\theta)$ , but very noisy.

### Variance Reduction - Discount

Blame each action assuming that its effects have exponentially decaying impact into the future.



- In the extreme, if discount of 0, almost no variance at all.
- So discount can be both a problem definition, or a hyper-parameter.

### Variance Reduction - Baseline

Sample estimate, unbiased but can be very noisy

$$\nabla U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \log P\left(\tau^{(i)}; \theta\right) R\left(\tau^{(i)}\right)$$

- Can we keep unbiasedness but reduce variance? Yes!
- Subtract an appropriate baseline can keep the unbiasedness

$$\mathbb{E}\left[\nabla_{\theta}\log P(\tau;\theta)b\right] = \sum_{\tau} P(\tau;\theta)\nabla_{\theta}\log P(\tau;\theta)b \qquad \nabla U(\theta) \approx \hat{g} = \frac{1}{m}\sum_{i=1}^{m} \nabla_{\theta}\log P\left(\tau^{(i)};\theta\right)\left(R\left(\tau^{(i)}\right) - b\right)$$

$$= \sum_{\tau} P(\tau;\theta)\frac{\nabla_{\theta}P(\tau;\theta)}{P(\tau;\theta)}b$$

$$= \sum_{\tau} \nabla_{\theta}P(\tau;\theta)b$$

$$= \nabla_{\theta}\left(\sum_{\tau} P(\tau)b\right) = b\nabla_{\theta}\left(\sum_{\tau} P(\tau)\right) = b\times 0$$

### Variance-reduction Baselines

- Constant  $b = \frac{1}{m} \sum_{i=1}^{m} R\left(\tau^{(i)}\right)$
- Optimal constant baseline:  $b = \frac{\sum_{i} \left( \nabla_{\theta} \log P(\tau^{(i)}; \theta) \right)^{2} R(\tau^{(i)})}{\sum_{i} \left( \nabla_{\theta} \log P(\tau^{(i)}; \theta) \right)^{2}}$

[Greensmith, Bartlett, Baxter, JMLR 2004 for variance reduction techniques.]

- Estimated state-dependent value functions:  $b\left(s_{t}\right) = \hat{V}^{\pi}\left(s_{t}\right)$ 

\_ I.e., 
$$\nabla U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \log P\left(\tau^{(i)}; \theta\right) \left(R\left(\tau^{(i)}\right) - \hat{V}^{\pi}(s)\right)$$
 Advantage

- We'll discuss methods on how to estimate  $\hat{V}^{\pi}\left(s_{t}\right)$  later.
- This kind of "value" baseline very roughly gets us to actor-critic methods.

### Variance Reduction - Temporal Structure

Current gradient estimate:

$$\begin{split} \hat{g} &= \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \log P\left(\tau^{(i)}; \theta\right) \left( R\left(\tau^{(i)}\right) - b \right) \\ &= \frac{1}{m} \sum_{i=1}^{m} \left( \sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left( a_{t}^{(i)} \mid s_{t}^{(i)} \right) \right) \left( \sum_{t=0}^{H-1} R\left( s_{t}^{(i)}, a_{t}^{(i)} \right) - b \right) \\ &= \frac{1}{m} \sum_{i=1}^{m} \left( \sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left( a_{t}^{(i)} \mid s_{t}^{(i)} \right) \left[ \left( \sum_{k=0}^{t-1} R\left( s_{k}^{(i)}, a_{k}^{(i)} \right) \right) + \left( \sum_{k=t}^{H-1} R\left( s_{k}^{(i)}, a_{k}^{(i)} \right) \right) - b \right] \right) \end{split}$$

Removing terms that don't depend on current action can lower variance:

$$\frac{1}{m} \sum_{i=1}^{m} \sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left( a_{t}^{(i)} \mid s_{t}^{(i)} \right) \left( \sum_{k=t}^{H-1} R \left( s_{k}^{(i)}, a_{k}^{(i)} \right) - b \left( s_{t}^{(i)} \right) \right)$$

[Policy Gradient Theorem: Sutton et al 1999; GPOMDP: Bartlett & Baxter, 2001; Survey: Peters & Schaal, 2006]

# Estimation of $V^{\pi}$ (coming up later)

- State-dependent expected return:  $b\left(s_{t}\right) = \mathbb{E}\left[r_{t} + r_{t+1} + r_{t+2} + \ldots + r_{H-1}\right] = V^{\pi}\left(s_{t}\right)$ 
  - Increase the prob of action proportionally to how much its returns are better than the expected return under the current policy
- · Can't exactly solve for  $V^{\pi}$ ; again need to estimate. How?
  - Either collect  $\tau_1, ..., \tau_m$ , and regress against empirical return:

$$\phi_{i+1} \leftarrow \arg\min_{\phi} \frac{1}{m} \sum_{i=1}^{m} \sum_{t=0}^{H-1} \left( V_{\phi}^{\pi} \left( s_{t}^{(i)} \right) - \left( \sum_{k=t}^{H-1} R \left( s_{k}^{(i)}, u_{k}^{(i)} \right) \right) \right)^{2}$$

- Or similar to fitted Q-learning, do fitted V-learning:

$$\phi_{i+1} \leftarrow \min_{\phi} \sum_{(s,u,s',r)} \| r + V_{\phi_i}^{\pi}(s') - V_{\phi}(s) \|_{2}^{2}$$

### Algorithm 1 "Vanilla" policy gradient algorithm

Initialize policy parameter  $\theta$ , baseline b

for iteration=1, 2, . . . do

Collect a set of trajectories by executing the current policy

At each timestep in each trajectory, compute

the return  $R_t = \sum_{t'=t}^{T-1} \gamma^{t'-t} r_{t'}$ , and

the advantage estimate  $\hat{A}_t = R_t - b(s_t)$ .

Re-fit the baseline, by minimizing  $||b(s_t) - R_t||^2$ ,

summed over all trajectories and timesteps.

Update the policy, using a policy gradient estimate  $\hat{g}$ , which is a sum of terms  $\nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \hat{A}_t$ 

### end for

# Thanks!

Questions?