6.7900 Machine Learning (Fall 2023)

Lecture 17:
Reinforcement Learning Cont'd
(supporting slides)
Shen Shen

Outline

- Value-based RL
 - (Tabular) Q-learning
- Policy-based RL
 - What does the policy gradient do?
 - Policy gradient derivation
 - Policy gradient estimates
 - Variance reduction
 - Constant Baselines
 - Temporal structure
 - Actor-critic intro

References

- More RL-flavored presentation:
 - Reinforcement Learning: An Introduction, Sutton and Barton; The MIT Press, 2018. Chapter 6 and 13
- Seminal papers referenced on slides.
- Some slides adapted from: Philip Isola, Pieter Abbeel, and Andrej Karpathy

Reinforcement Learning

Unknown Model

> Known Model

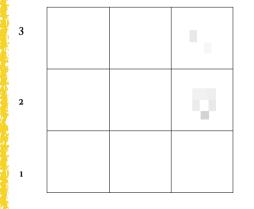
Multi-Armed	Reinforcement
Bandits	Learning
Stochastic	Markov Decision
Optimization	Process

Actions Don't Impact State

Actions Change State

Example: Grid World

(in RL)



(Almost deterministic) Transitions:

- Normally, actions take us deterministically to the "intended" state. E.g., in state (1,1), action "North" gets us to state (1,2)
- If an action would take us out of this world, stay put
- In state (3,2), action "North" leads to two possible next state:
- chance ends in (3,3)
- chance ends in (2,3)

State space: 9 cells
Actions space: {North,
South, East, West}
Discount $\gamma = 0.9$

Deterministic Rewards:

- State (3,3), any action gets reward
- State (3,2), any action gets reward
- Any other (state, action) pairs get reward 0

Markov Decision Process RI

- \mathcal{S} : a state space which contains all possible states s of the system.
- · \mathscr{A} : an action space which contains all possible actions a an agent can take.
- P(s'|s,a): the probability of transition from state s to s' if action a is taken.
- R(s,a): a function that takes in the (state and action) and returns a real-valued reward.

Sometimes, also:

- s_0 : initial state.
- Objective version (may involve a $\gamma \in [0,1]$: discount factor (details later), and/or T: horizon. Details later).

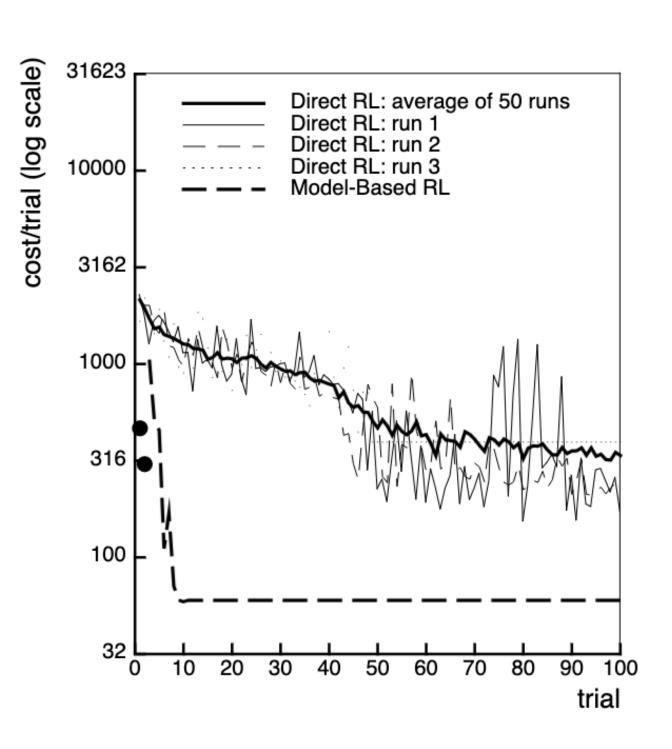
RL MDP Goal

Find a policy $\pi: S \to A$, such that:

$$\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, \pi(s_{t}) \mid s_{0} = s\right] \text{ is maximized for all } s_{0}$$

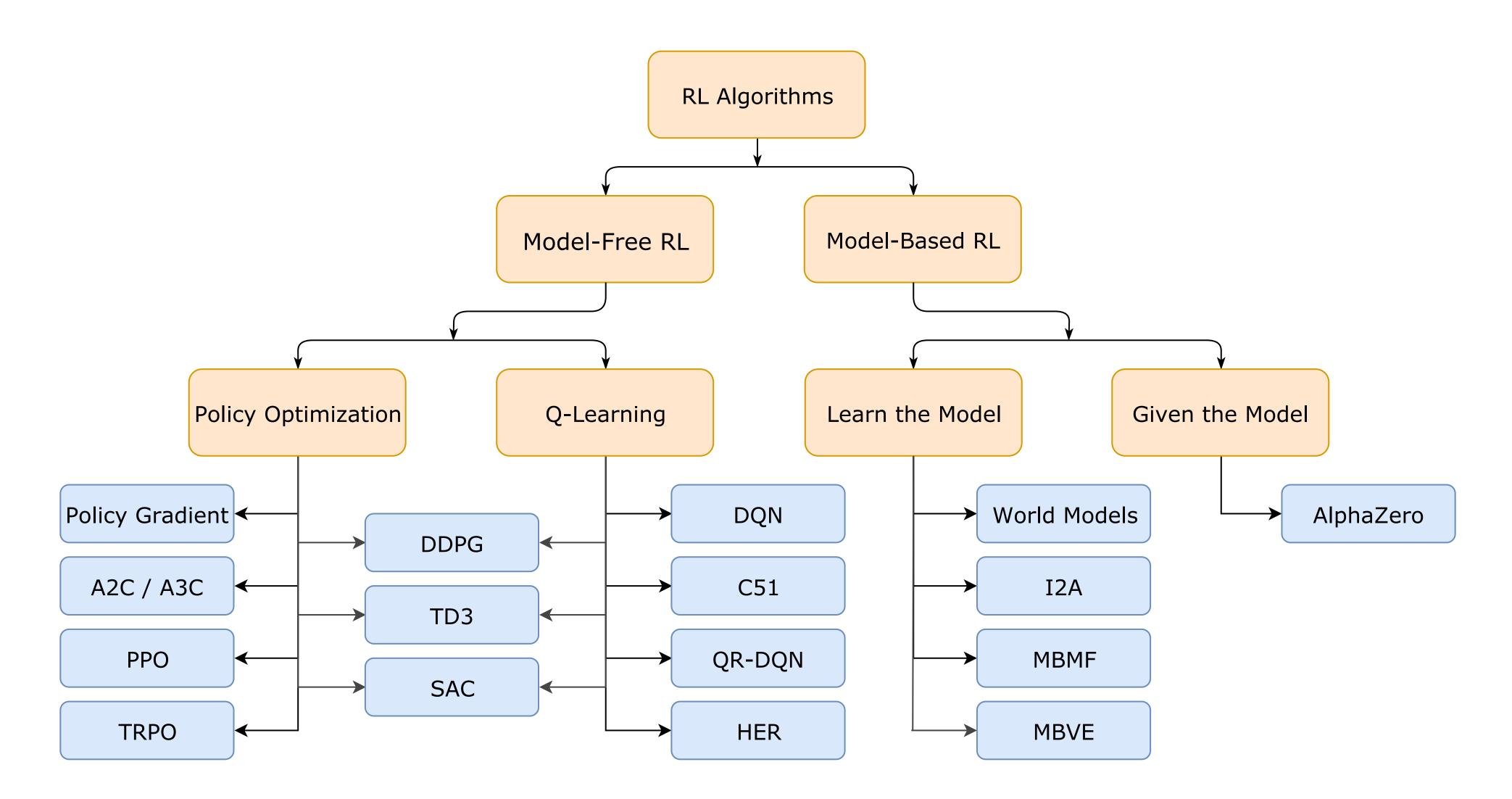
Model-Based RL

- Collect trajectories to estimate the transition and rewards model (system identification in control)
 - $\hat{P}\left(s' \mid s, a\right) = \frac{1}{N(s, a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k 1} 1\left(s_{k, t} = s, a_{k, t} = a, s_{k, t+1} = s'\right)$
 - $\hat{R}(s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k-1} 1 \left(s_{k,t} = s, a_{k,t} = a \right) r_{t,k}$
 - Where $1(\,\cdot\,)$ is indicator function and N(s,a) is the count of trajectories starting from (s,a)
- Then solve the estimated MDP
- Typically more sample efficient than the so-called model-free RL
- Inherit limitations of MDP exact methods, e.g., can be very computationally expensive



[Atkeson and Santamaría, 96]

A Glance of RL Algorithms



Q Learning

- Recall that using Q-value iteration, we update our estimate of Q via $Q_{\text{new}}(s, a) \leftarrow \mathbb{E}[R(s, a)] + \gamma \sum_{s'} p\left(s' \mid s, a\right) \max_{a'} Q\left(s', a'\right)$
- $^{\bullet}$ Without access to P and R, how would we be able to use this?
- One idea is to sample a state and action pair (s, a), simulate, observe s', r, and then $Q_{\text{new}}(s, a) \leftarrow r + \gamma \max_{a'} Q(s', a')$
- But this is too "current sample dependent" assumes the observed r is the only possible reward, assumes the observed s' is the only possible next state.
- So, instead, "smooth" the update with a step-size α $Q_{\text{new}}(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha(r+\gamma \max_{a'}Q(s',a'))$ target

(Tabular) Q Learning

```
Q-Learning(S, A, s_0, \gamma, \alpha, \epsilon)
 1 Q(s, a) = 0 for s \in S, a \in A
 2 s = s_0 // (e.g., s_0 can be drawn randomly from S)
     while True:
          a = select_action(s, Q)
                                                                                 target
          r, s' = execute(a)
           Q_{\text{new}}(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha(r + \gamma \max_{\alpha'} Q(s', a'))
           s \leftarrow s'
           if |Q - Q_{new}| < \epsilon: // (or, if reached some max iteration)
 8
 9
                 return Q<sub>new</sub>
10
```

Q-learning Comments

- Face the same exploration versus exploitation dilemma as in bandits (due to unknown model)
- selection_action in line4 often uses epsilon-greedy; many other options available
- Rearranging terms in line 6, the update can also be interpreted via temporal-difference (TD) error: $Q_{new}(s,a) \leftarrow Q(s,a) + \alpha(\text{target} Q(s,a))]$
- In TD-error form, the update looks quite like SGD.
- · Closely connects to Fitted Q-learning (coming up in future lecture).

```
Q-Learning(S, A, s_0, \gamma, \alpha, \varepsilon)

1 Q(s, a) = 0 for s \in S, a \in A

2 s = s_0 // (e.g., s_0 can be drawn randomly from S)

3 while True:

4 a = \text{select\_action}(s, Q)

5 r, s' = \text{execute}(a)

6 Q_{\text{new}}(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha(r + \gamma \max_{a'} Q(s', a'))

7 s \leftarrow s'

8 if |Q - Q_{\text{new}}| < \varepsilon: // (or, if reached some max iteration)

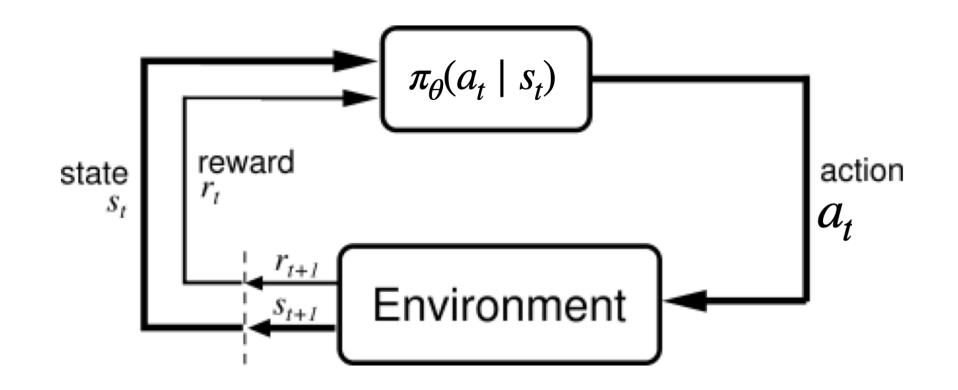
9 \text{return } Q_{\text{new}}

10 Q \leftarrow Q_{\text{new}}
```

- Can converge to true Q^* if:
 - All states and actions visited infinity often
 - Step-size α are annealed (i.e. if α_k , k being the iteration number of line 6, satisfy:

$$\sum_{k=1}^{\infty} \alpha_k = \infty \text{ and } \sum_{k=1}^{\infty} \alpha_k^2 < \infty)$$

Policy Optimization



- Parameterize policy by θ and directly try $\max_{\theta} \mathbb{E}\left[\sum \gamma^t R\left(s_t, a_t\right) \mid \pi_{\theta}\right]$
- Stochastic policy class $\pi_{\theta}(a \mid s)$: probability of action a in state s
 - Discrete \mathscr{A} : e.g. $\pi_{\theta}(a \mid s)$ softmax
 - Continuous \mathscr{A} : e.g. $\pi_{\theta}(a \mid s)$ Gaussian with mean/variance parameterized by θ
 - Smoothes out the optimization problem
 - Also encourages exploration

Why Policy Optimization

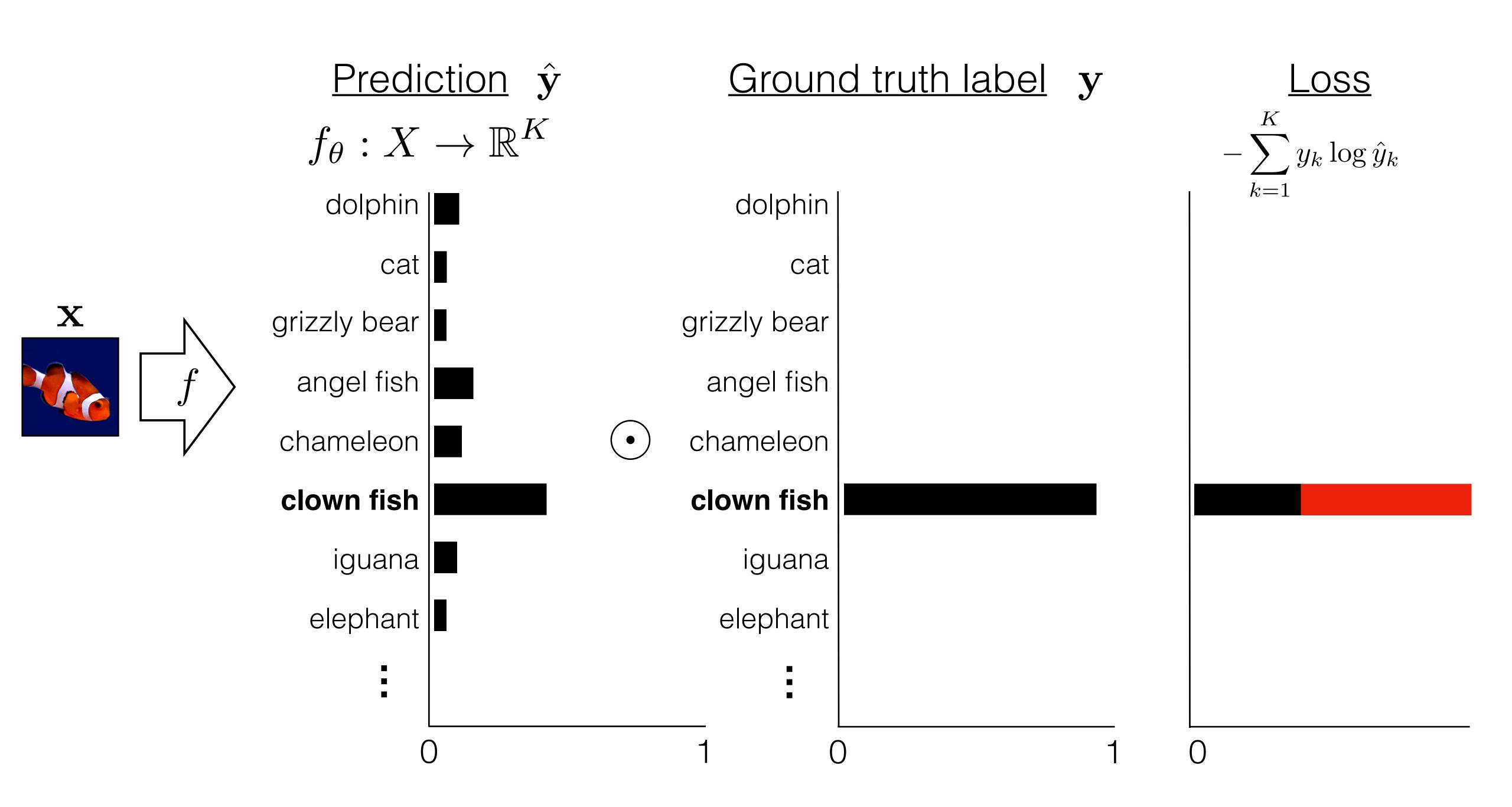
- Often π can be simpler than Q or V
 - e.g. lots of π are roughly good
- V(s): doesn't prescribe actions

$$\pi^*(s) = \arg\max_{a} \left[\mathbb{E}[R(s, a)] + \gamma \sum_{s'} p(s'|s, a) V^*(s') \right]$$

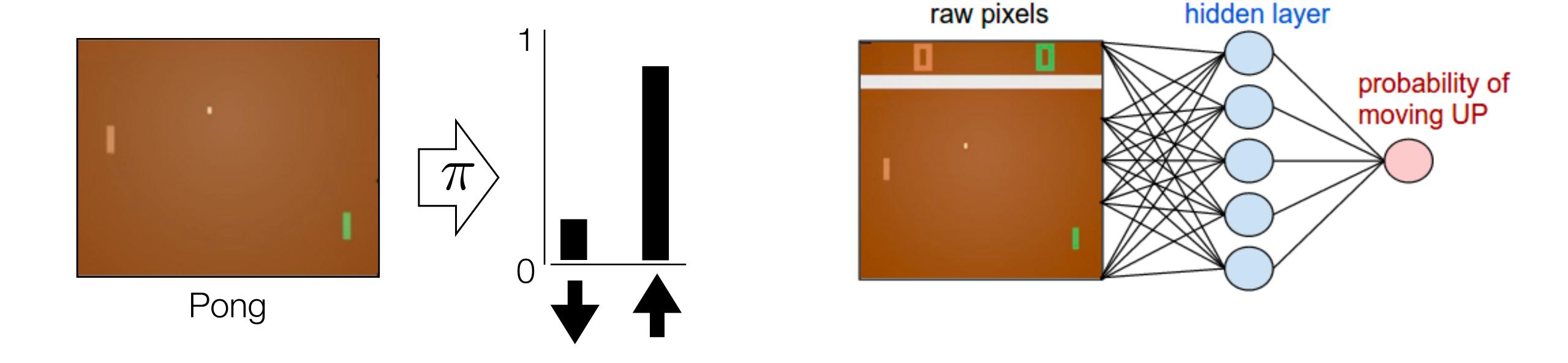
- Would still need world model (and compute one-step Bellman update)
- Q: need to be able to efficiently solve $\arg \max_a Q(s, a)$

$$-\pi^*(s) = \arg\max_a Q^*(s, a)$$

- Can be challenging for continuous / high-dimensional action spaces
- Maybe makes sense to direct optimize policy end-to-end
- So how do we do this?

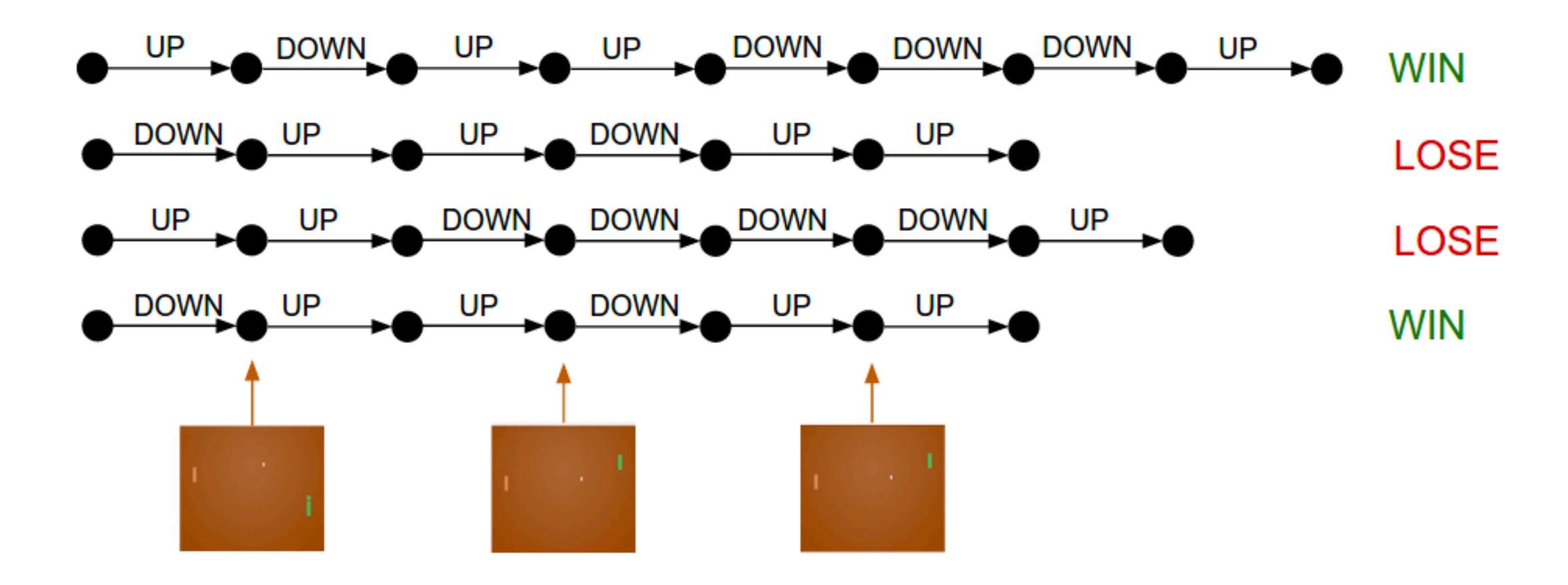


- If explicit "good" state-action pair is given, also supervised learning.
- Behavior cloning or imitation learning.
- But what if no explicit guide?



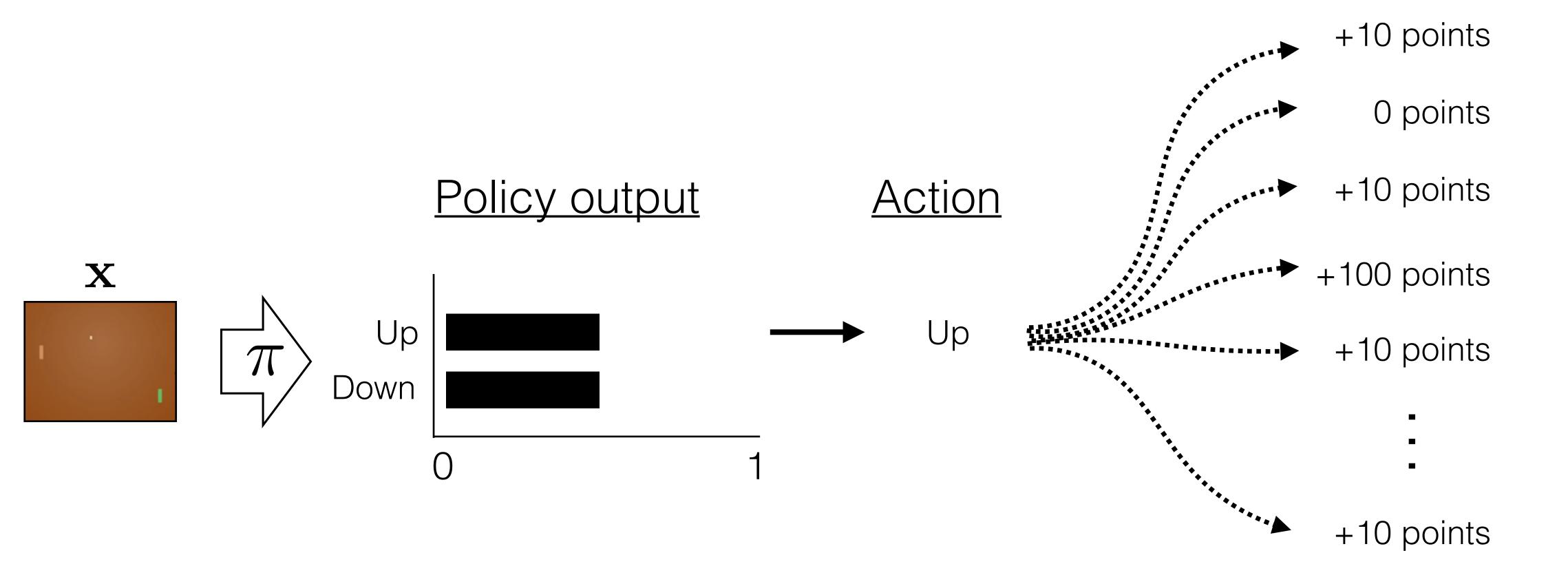
[Adapted from Andrej Karpathy: http://karpathy.github.io/2016/05/31/rl/]

Policy gradients: Run a policy for a while. See what actions led to good return. Increase their likelihood.

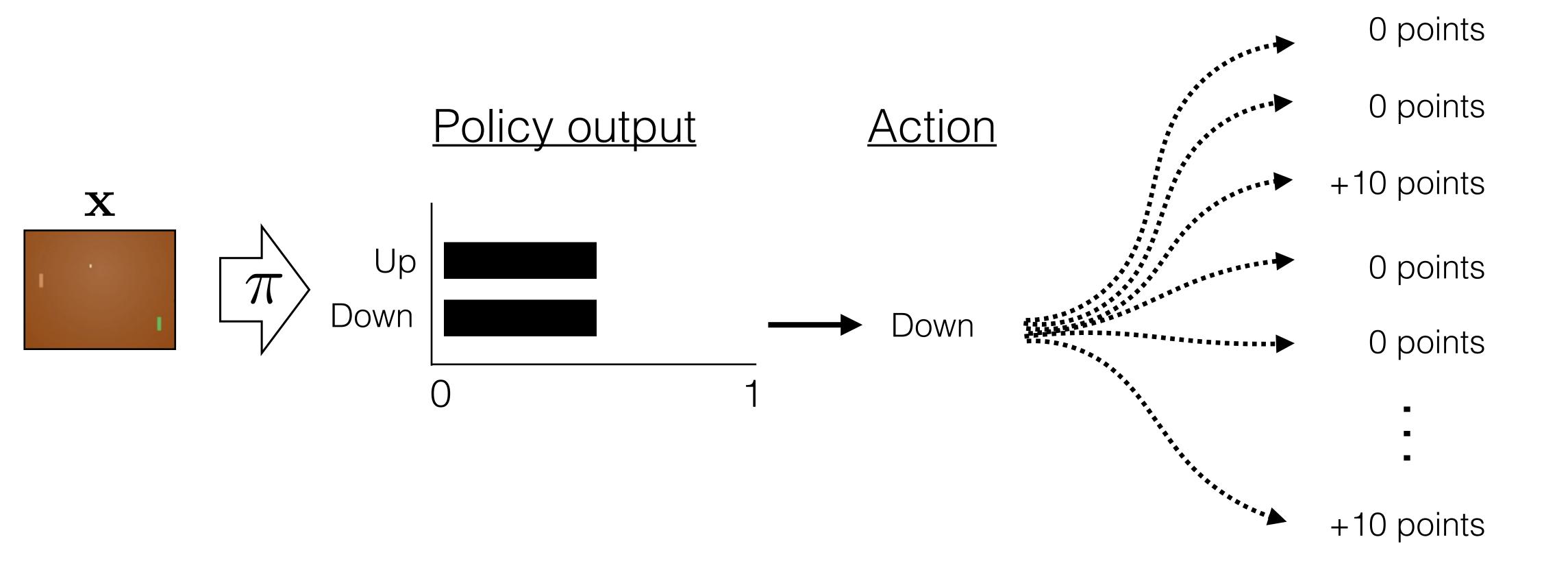


[Adapted from Andrej Karpathy: http://karpathy.github.io/2016/05/31/rl/]

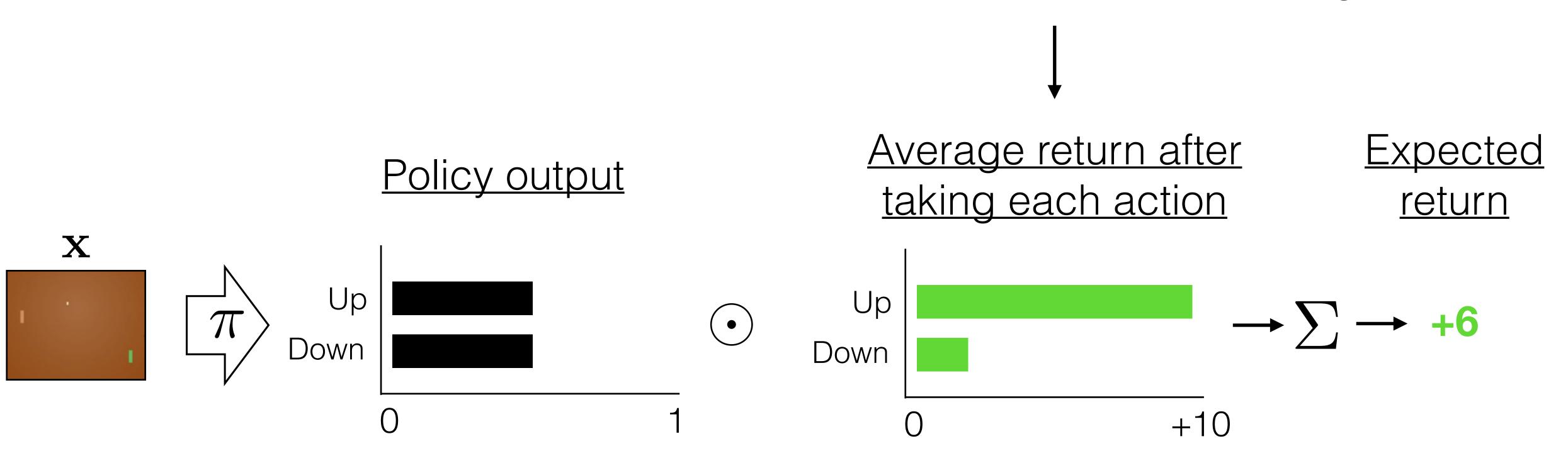
Eventual return



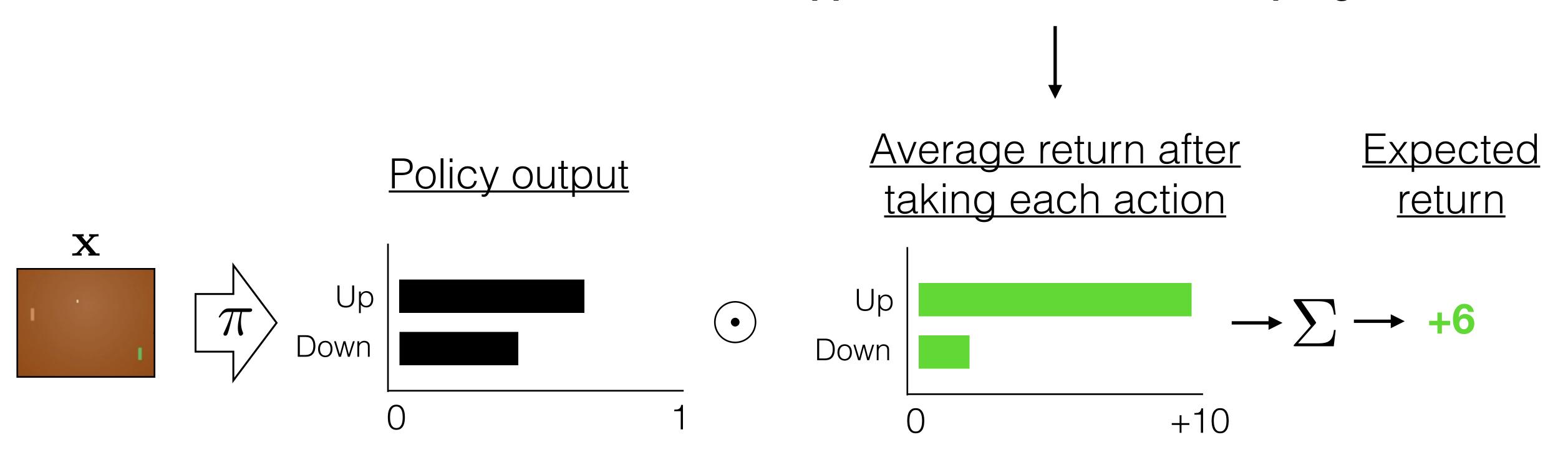
Eventual return



Approximated via lots of sampling



Approximated via lots of sampling



How is this gradient update done though (as we don't have the world model Pong)?

Likelihood Ratio Policy Gradient

- We overload notation:
 - Let τ denote a state-action sequence: $\tau = s_0, a_0, s_1, a_1, \dots$
 - Let $R(\tau)$ denote the sum of discounted rewards on $\tau: R(\tau) = \sum_t \gamma^t R\left(s_t, a_t\right)$
 - W.l.o.g. assume $R(\tau)$ is deterministic in τ
 - Let $P(\tau;\theta)$ denote the probability of trajectory au induced by π_{θ}
 - Let $U(\theta)$ denote the objective: $U(\theta) = \mathbb{E}[\sum_t \gamma^t R\left(s_t, a_t\right) \mid \pi_{\theta}]$

• Our goal is to find θ : $\max_{\theta} U(\theta) = \max_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau)$

Likelihood Ratio Policy Gradient

Taking the gradient w.r.t. θ gives

$$\begin{split} \nabla_{\theta} U(\theta) &= \nabla_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau) \\ &= \sum_{\tau} \nabla_{\theta} P(\tau; \theta) R(\tau) \\ &= \sum_{\tau} \frac{P(\tau; \theta)}{P(\tau; \theta)} \nabla_{\theta} P(\tau; \theta) R(\tau) \\ &= \sum_{\tau} P(\tau; \theta) \frac{\nabla_{\theta} P(\tau; \theta)}{P(\tau; \theta)} R(\tau) \\ &= \sum_{\tau} P(\tau; \theta) \nabla_{\theta} \log P(\tau; \theta) R(\tau) \end{split}$$

$$U(\theta) = \sum_{\tau} P(\tau; \theta) R(\tau)$$

But
$$P(\tau; \theta) = \prod_{t=0}^{\infty} P(s_{t+1} \mid s_t, a_t) \cdot \pi_{\theta}(a_t \mid s_t)$$
transition policy

Use identity

$$\nabla_{\theta} p_{\theta}(\tau) = p_{\theta}(\tau) \frac{\nabla_{\theta} p_{\theta}(\tau)}{p_{\theta}(\tau)}$$
$$= p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau)$$

Likelihood Ratio Policy Gradient

$$\nabla_{\theta} U(\theta) = \sum_{\tau} P(\tau; \theta) \nabla_{\theta} \log P(\tau; \theta) R(\tau)$$

Approximate with the empirical estimate for m sample traj. under policy π_{θ}

$$\nabla_{\theta} U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \log P\left(\tau^{(i)}; \theta\right) R\left(\tau^{(i)}\right)$$

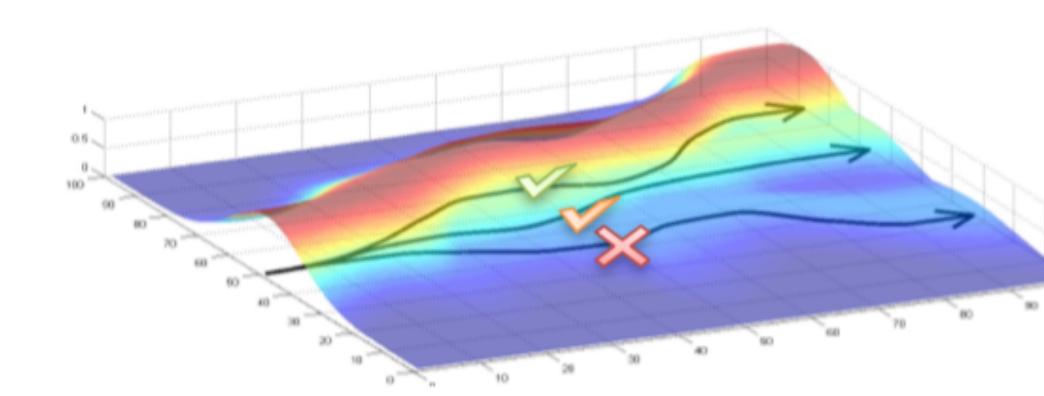
Valid even when:

- Reward function discontinuous and/or unknown
- Discrete state and/or action spaces

Likelihood Ratio Gradient

$$\nabla_{\theta} U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \log P\left(\tau^{(i)}; \theta\right) R\left(\tau^{(i)}\right)$$

- Checks out with our intuition that:
 - Increase likelihood of trajectory with big reward
 - Decrease prob of trajectory with negative reward



- How do we evaluate $\nabla_{\theta} \log P\left(\tau^{(i)}; \theta\right)$ though?
 - Didn't we say we don't know the transition?

$$P(\tau; \theta) = \prod_{t=0}^{t} P\left(s_{t+1} \mid s_{t}, a_{t}\right) \cdot \pi_{\theta}\left(a_{t} \mid s_{t}\right)]$$
transition policy

Decompose a trajectory

$$\nabla_{\theta} \log P(\tau; \theta) = \nabla_{\theta} \log \left[\prod_{t=0}^{t} P\left(s_{t+1} \mid s_{t}, a_{t}\right) \cdot \pi_{\theta}\left(a_{t} \mid s_{t}\right) \right]$$
transition policy

$$= \nabla_{\theta} \left[\sum_{t=0}^{t} \log P\left(s_{t+1} \mid s_{t}, a_{t}\right) + \sum_{t=0}^{t} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right) \right]$$

$$= \nabla_{\theta} \sum_{t=0}^{\infty} \log \pi_{\theta} \left(a_t \mid s_t \right)$$

$$= \sum_{t=0}^{\infty} \nabla_{\theta} \log \pi_{\theta} \left(a_{t} \mid s_{t} \right)$$
no transition model required,

Likelihood Ratio Gradient - Summary

• The following expression provides us with an unbiased estimate of the gradient, and we can compute it without access to the world model:

$$\hat{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \log P\left(\tau^{(i)}; \theta\right) R\left(\tau^{(i)}\right)$$

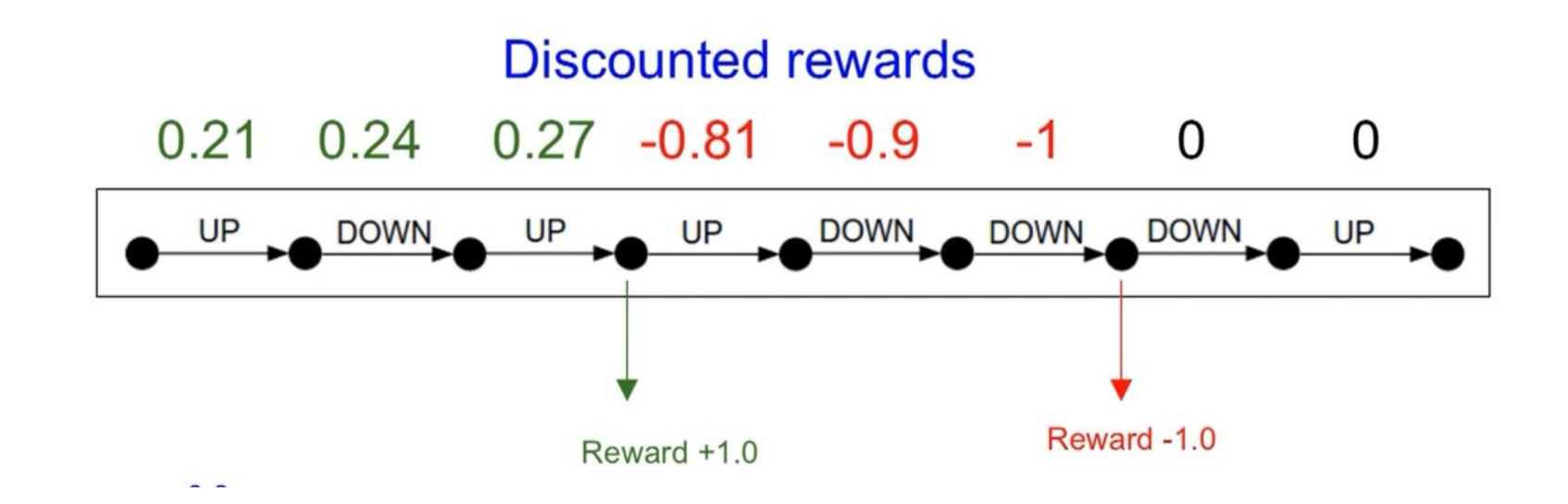
Here

$$\nabla_{\theta} \log P(\tau; \theta) = \sum_{t=0}^{\infty} \nabla_{\theta} \log \pi_{\theta} \left(a_{t} \mid s_{t} \right)$$
no need of dynamics

· Unbiased estimator $E[\hat{g}] = \nabla_{\theta} U(\theta)$, but very noisy.

Variance Reduction - Discount

Blame each action assuming that its effects have exponentially decaying impact into the future.



- In the extreme, if discount of 0, almost no variance at all.
- So discount can be both a problem definition, or a hyper-parameter.

Variance Reduction - Baseline

Sample estimate, unbiased but can be very noisy

$$\nabla U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \log P\left(\tau^{(i)}; \theta\right) R\left(\tau^{(i)}\right)$$

- Can we keep unbiasedness but reduce variance? Yes!
- Subtract an appropriate baseline can keep the unbiasedness

$$\mathbb{E}\left[\nabla_{\theta}\log P(\tau;\theta)b\right] = \sum_{\tau} P(\tau;\theta)\nabla_{\theta}\log P(\tau;\theta)b \qquad \nabla U(\theta) \approx \hat{g} = \frac{1}{m}\sum_{i=1}^{m} \nabla_{\theta}\log P\left(\tau^{(i)};\theta\right)\left(R\left(\tau^{(i)}\right) - b\right)$$

$$= \sum_{\tau} P(\tau;\theta)\frac{\nabla_{\theta}P(\tau;\theta)}{P(\tau;\theta)}b$$

$$= \sum_{\tau} \nabla_{\theta}P(\tau;\theta)b$$

$$= \nabla_{\theta}\left(\sum_{\tau} P(\tau)b\right) = b\nabla_{\theta}\left(\sum_{\tau} P(\tau)\right) = b\times 0$$

Variance-reduction Baselines

- Constant $b = \frac{1}{m} \sum_{i=1}^{m} R\left(\tau^{(i)}\right)$
- Optimal constant baseline: $b = \frac{\sum_{i} \left(\nabla_{\theta} \log P(\tau^{(i)}; \theta) \right)^{2} R(\tau^{(i)})}{\sum_{i} \left(\nabla_{\theta} \log P(\tau^{(i)}; \theta) \right)^{2}}$

[Greensmith, Bartlett, Baxter, JMLR 2004 for variance reduction techniques.]

- Estimated state-dependent value functions: $b\left(s_{t}\right) = \hat{V}^{\pi}\left(s_{t}\right)$

_ I.e.,
$$\nabla U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \log P\left(\tau^{(i)}; \theta\right) \left(R\left(\tau^{(i)}\right) - \hat{V}^{\pi}(s)\right)$$
 Advantage

- We'll discuss methods on how to estimate $\hat{V}^{\pi}\left(s_{t}\right)$ later.
- This kind of "value" baseline very roughly gets us to actor-critic methods.

Variance Reduction - Temporal Structure

Current gradient estimate:

$$\begin{split} \hat{g} &= \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \log P\left(\tau^{(i)}; \theta\right) \left(R\left(\tau^{(i)}\right) - b \right) \\ &= \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{(i)} \mid s_{t}^{(i)} \right) \right) \left(\sum_{t=0}^{H-1} R\left(s_{t}^{(i)}, a_{t}^{(i)} \right) - b \right) \\ &= \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{(i)} \mid s_{t}^{(i)} \right) \left[\left(\sum_{k=0}^{t-1} R\left(s_{k}^{(i)}, a_{k}^{(i)} \right) \right) + \left(\sum_{k=t}^{H-1} R\left(s_{k}^{(i)}, a_{k}^{(i)} \right) \right) - b \right] \right) \end{split}$$

Removing terms that don't depend on current action can lower variance:

$$\frac{1}{m} \sum_{i=1}^{m} \sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{(i)} \mid s_{t}^{(i)} \right) \left(\sum_{k=t}^{H-1} R \left(s_{k}^{(i)}, a_{k}^{(i)} \right) - b \left(s_{t}^{(i)} \right) \right)$$

[Policy Gradient Theorem: Sutton et al 1999; GPOMDP: Bartlett & Baxter, 2001; Survey: Peters & Schaal, 2006]

Estimation of V^{π} (coming up later)

- State-dependent expected return: $b\left(s_{t}\right) = \mathbb{E}\left[r_{t} + r_{t+1} + r_{t+2} + \ldots + r_{H-1}\right] = V^{\pi}\left(s_{t}\right)$
 - Increase the prob of action proportionally to how much its returns are better than the expected return under the current policy
- · Can't exactly solve for V^{π} ; again need to estimate. How?
 - Either collect $\tau_1, ..., \tau_m$, and regress against empirical return:

$$\phi_{i+1} \leftarrow \arg\min_{\phi} \frac{1}{m} \sum_{i=1}^{m} \sum_{t=0}^{H-1} \left(V_{\phi}^{\pi} \left(s_{t}^{(i)} \right) - \left(\sum_{k=t}^{H-1} R \left(s_{k}^{(i)}, u_{k}^{(i)} \right) \right) \right)^{2}$$

- Or similar to fitted Q-learning, do fitted V-learning:

$$\phi_{i+1} \leftarrow \min_{\phi} \sum_{(s,u,s',r)} \| r + V_{\phi_i}^{\pi}(s') - V_{\phi}(s) \|_{2}^{2}$$

Algorithm 1 "Vanilla" policy gradient algorithm

Initialize policy parameter θ , baseline b

for iteration=1, 2, . . . do

Collect a set of trajectories by executing the current policy

At each timestep in each trajectory, compute

the return $R_t = \sum_{t'=t}^{T-1} \gamma^{t'-t} r_{t'}$, and

the advantage estimate $\hat{A}_t = R_t - b(s_t)$.

Re-fit the baseline, by minimizing $||b(s_t) - R_t||^2$,

summed over all trajectories and timesteps.

Update the policy, using a policy gradient estimate \hat{g} , which is a sum of terms $\nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \hat{A}_t$

end for

Thanks!

Questions?