6.7900 Machine Learning (Fall 2023)

Lecture III:

Optimization and Regularization (supporting slides)

Outline for Today

- Optimization
 - Set up and terminology
 - Convex and strictly convex functions
 - (Stochastic) gradient descent
- Regression and regularized regression
 - Ordinary, ridge, lasso regression
 - Other regularizers and interpretations
- Regularization
 - Mitigating training (optimization) and testing (statistics)
 - Explicit regularization
 - Implicit regularization

References

- Optimization and (S)GD:
 - Convex Optimization [Boyd and Vandenberghe]
 - Introduction to Optimization, [Chong and Zak], especially Chapter 8.
- Ridge/lasso/explicit regularization:
 - Pattern Recognition and Machine Learning, [Bishop]
 - Referenced on slides
- Implicit regularization:
 - Dropout (Srivastava et al., 2014)
 - Label smoothing (Szegedy et al 2016)
 - Early stopping (Caruana et al., 2001)
 - Gradient Descent Only Converges to Minimizers (Lee et al, 2019)
- Some slides edited from: Tamara Broderick, Stephen Boyd, and Suvrit Sr a

What is Empirical Risk Minimization?

Learner does not know $\mathbb{P}(X, Y)$, so true error (Bayes error) is not known to the learner. However,

➤ **Training Error**: The error that the classifier incurs on the training data

$$L_S(h) := \frac{1}{N} \# \{ i \in [N] \mid h(x_i) \neq y_i \},$$

aka empirical risk

- **ERM principle**: Seek predictor that minimizes $L_S(h)$
- ▶ Pitfall: Overfitting!

Optimization Terminology

(mathematical) optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq b_i, \quad i = 1, \dots, m$

- $x = (x_1, \ldots, x_n)$: optimization variables
- $f_0: \mathbb{R}^n \to \mathbb{R}$: objective function
- $f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$: constraint functions

(Global) optimal solution x^* has smallest value of f_0 among all vectors that satisfy the constraints

0 < 0

Accommodates maximization: maximize $-f_0(x)$ subject to $f_i(x) \leq b_i$ subject to

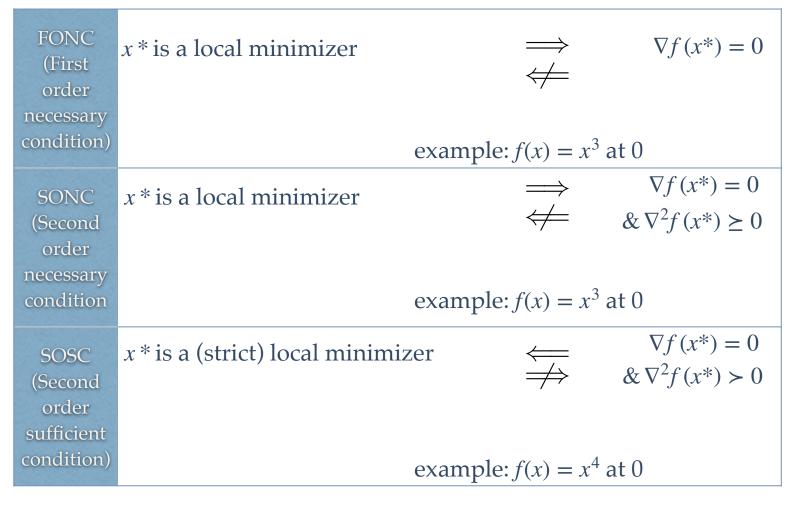
Accommodates unconstrained: minimize $f_0(x)$

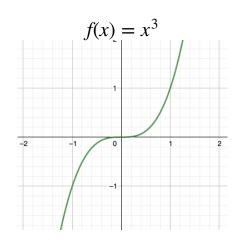
Unconstrained more heavily used in numerical solvers and modern ML

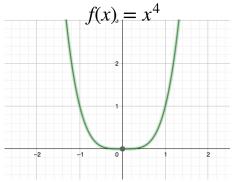
Anatomy

- Feasible solution(s): Any x that satisfies all constraints $f_i(x) \le b_i$
- Fixed points: Any x where $\nabla f(x) = 0$
- Local optimal solutions: Any x among feasible solutions that's smaller than its neighbors
- (Global) optimal solutions: Any x among feasible solutions that's globally minimum
- Optimal value: the objective function evaluated at an optimal solution $f_0(x^*)$

Unconstrained Local Optimality Condition







Positive Semidefinite Matrices

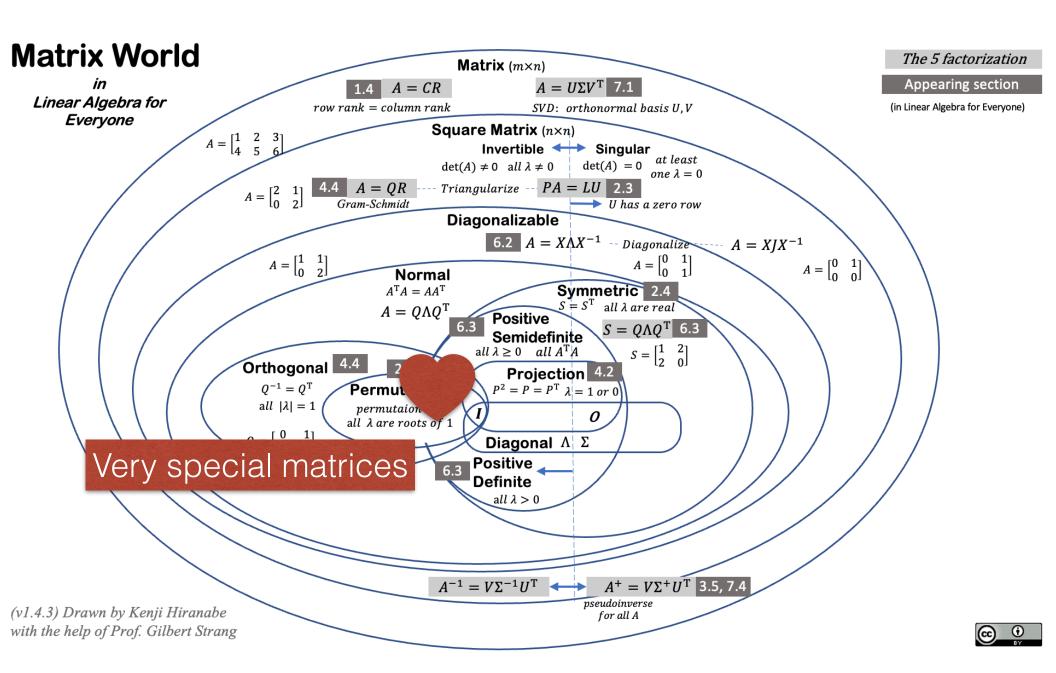
- Definition: An $n \times n$ symmetric real matrix A is said to be positive semidefinite (i.e., $A \geq 0$) if $x^T A x \geq 0$ for all x in \mathbb{R}^n .
- Or, equivalently:
 - All eigenvalues of A are non-negative.
 - There exists a factorization $A = B^T B$.
 - All $2^n 1$ principal minors of A are nonnegative
- e.g.

$$oldsymbol{A} = egin{bmatrix} 3 & 2 \ 2 & 3 \end{bmatrix} \qquad oldsymbol{A} = egin{bmatrix} 1 & 2 \ 3 & 4 \end{bmatrix} egin{bmatrix} 1 & 2 \ 3 & 4 \end{bmatrix} egin{bmatrix} 1 & 2 \ 3 & 4 \end{bmatrix}^T = egin{bmatrix} 5 & 11 \ 11 & 25 \end{bmatrix}$$

Positive Definite Matrices

- Definition: An $n \times n$ symmetric real matrix A is said to be positive definite (i.e., A > 0) if $x^T A x > 0$ for all x in \mathbb{R}^n and $x \neq 0$.
- Or, equivalently:
 - All eigenvalues of *A* are positive.
 - There exists a factorization $A = B^T B$ where B is square and non-singular.
 - All *n* **leading** principal minors of *A* are positive.
- · e.g.

$$m{A} = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} \qquad \quad A = egin{bmatrix} 7 & 2 \ 2 & 1 \end{bmatrix}$$



Global Optimality Condition

- If objective/constraints are convex functions, any local min is global min.
- Mainly why convexity is so beloved in optimization
- When is a function convex and how do we check for it?

A function
$$f: \mathbb{R}^n \to \mathbb{R}$$
 is convex if its domain is a convex set and $f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y) \forall x,y \in \mathrm{domain}(f), \forall \lambda \in [0,1]$

· Equivalent (sometimes easier to check) condition:

```
\nabla^2 f(x) \ge 0, \forall x \in \text{dom}(f) (i.e., the Hessian is psd \forall x \in \text{dom}(f))
```

· [demo]

Unconstrained Global Optimality Condition

- Generally, no "easy" way to check global optimality (let alone find solutions).
- Convex functions are a major class of exceptions to the above.

Classical problems
Almost all convex

Deep learning era Almost none convex

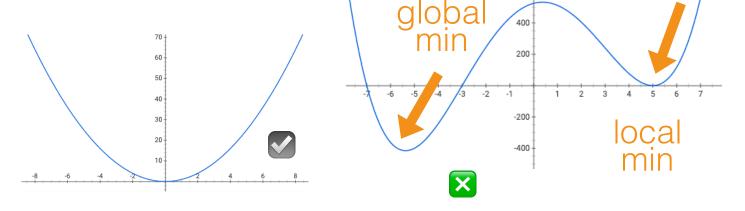
ML timeline

- Ongoing research on over-parameterization, local vs global min, implicit convexity, in deep learning
- · (Explicit) regularization is usually done by "injecting more convexity". So let's understand convexity a bit.

Convex Functions

• A function f on \mathbb{R}^m is convex if any line segment connecting two points of the graph of f lies above or

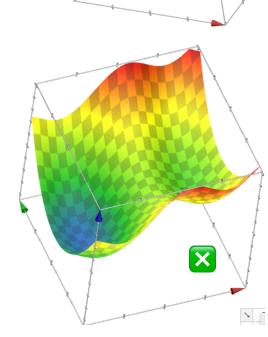
on the graph



[demo]

Convex functions are important because:

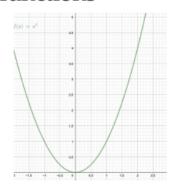
Every local minimizer is a global minimizer.

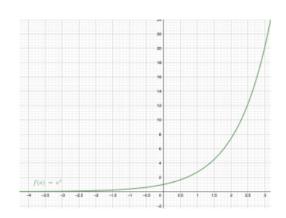


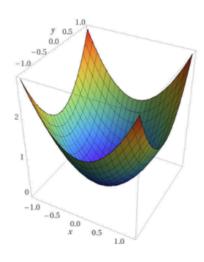
Convex Functions

Simple examples

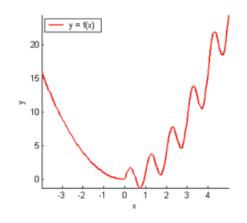
Convex functions

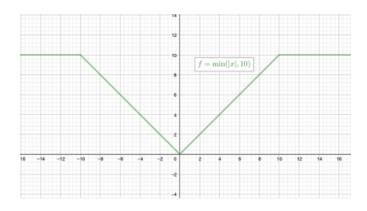


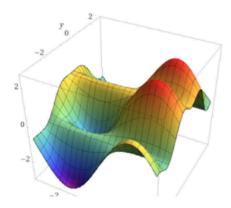




Non-convex functions



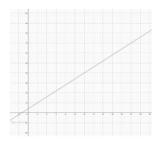


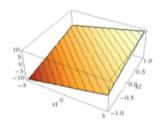


f is called a concave function if -f is convex

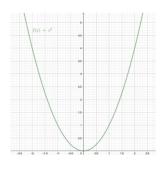
Common Convex Functions

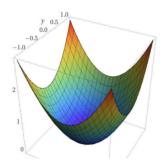
- All linear(affine) functions $f(x) = a^T x + b$ (for any $a \in \mathbb{R}^n, b \in \mathbb{R}$)





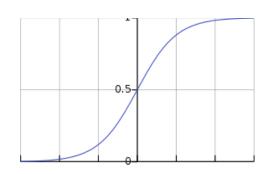
Some quadratic functions





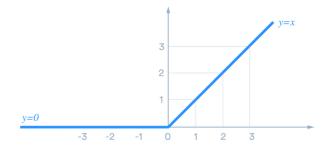
All norms

Is a Sigmoid
$$f(x) = \frac{1}{1 + e^{-x}}$$
 convex?



X

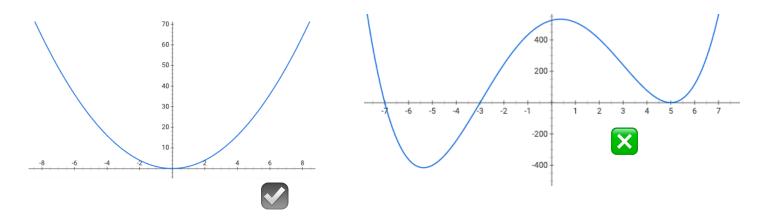
• Is ReLU $f(x) = \max(0,x)$ convex?



Strictly Convex Functions

• A function f on \mathbb{R}^m is convex if any line segment connecting two points of the graph of f lies above-or

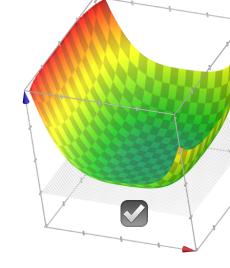
on the graph

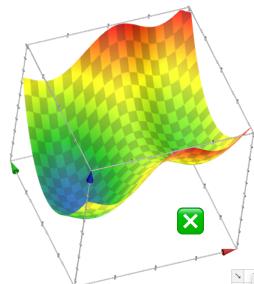


Strictly convex functions are important because:

- Every local minimizer is a global minimizer.
- There can be only one unique local/global min.
- Better theoretical properties (e.g., convergence rate).

[Quadratic function demo]





(Stochastic) Gradient Descent

Iteratively applies "gradient vector points to the direction where the function value increases the fastest"

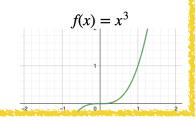
And hoping to get

Unconstrained (Local) Optimality

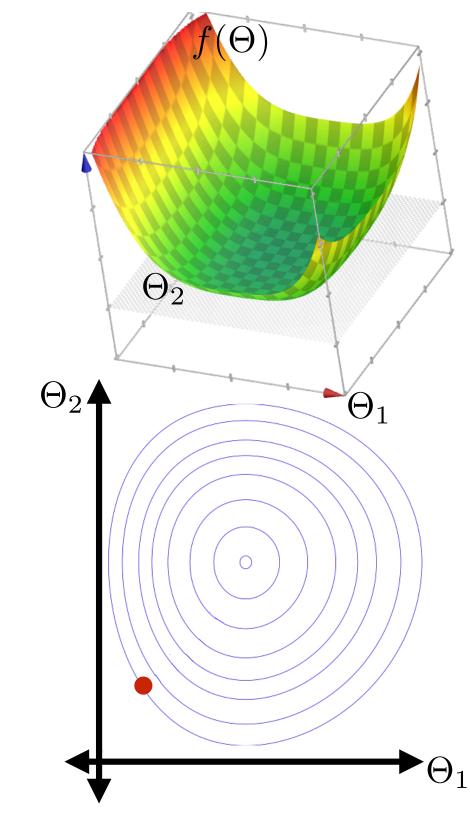
x* is a local minimizer

$$\nabla f(x^*) = 0$$

example: $f(x) = x^3$ at 0



Gradient descent



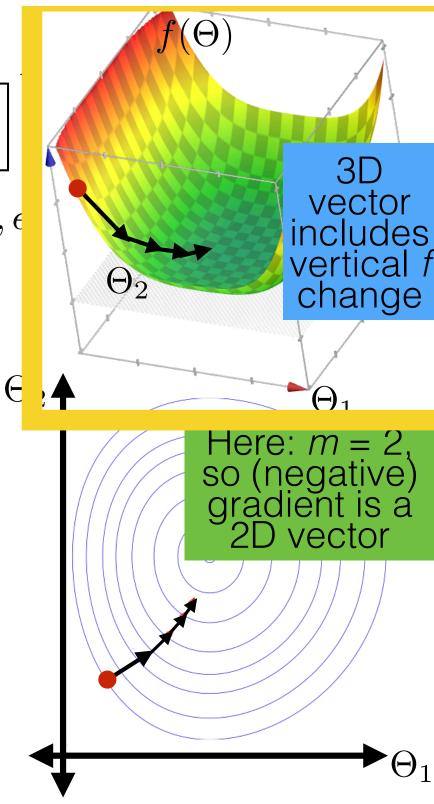
Gradient descent

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \frac{\partial f}{\partial \Theta_1}, \dots, \frac{\partial f}{\partial \Theta_m} \end{bmatrix}$ • with $\Theta \in \mathbb{R}^m$
- Gradient-Descent ($\Theta_{
 m init}, \eta, f,
 abla_{\Theta} f, \epsilon$ Initialize $\Theta^{(0)} = \Theta_{
 m init}$ Initialize t = 0

repeat

$$\begin{aligned} &\textbf{t} = \textbf{t} + \textbf{1} \\ &\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)}) \\ &\textbf{until} \left| f(\Theta^{(t)}) - f(\Theta^{(t-1)}) \right| < \epsilon \end{aligned}$$
 Return $\Theta^{(t)}$

- Other possible stopping criteria:
 - Max number of iterations T
 - $\|\Theta^{(t)} \Theta^{(t-1)}\| < \epsilon$
 - $\|\nabla_{\Theta} f(\Theta^{(t)})\| < \epsilon$



Stochastic gradient descent

• ERM or training error typically can be written as:

$$f(\Theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\Theta)$$

```
Stochastic-Gradient-Descent (\Theta_{\mathrm{init}}, \eta, T)
Initialize \Theta^{(0)} = \Theta_{\mathrm{init}}

for t = 1 to T

randomly select i from \{1, ..., n\} (with equal probability)

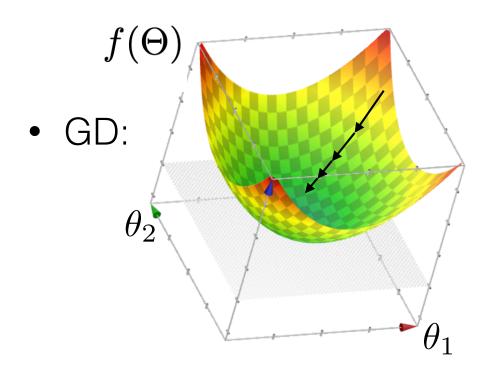
\Theta^{(t)} = \Theta^{(t-1)} - \eta(t) \nabla_{\Theta} f_i(\Theta^{(t-1)})

Return \Theta^{(t)}

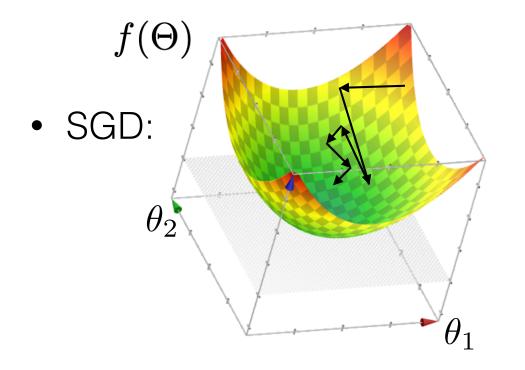
Compare to gradient descent update:
\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})
```

GD vs SGD

Compare to gradient descent update:
$$\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})$$



$$\Theta^{(t)} = \Theta^{(t-1)} - \eta(t) \nabla_{\Theta} f_i(\Theta^{(t-1)})$$



Quick Summary

- Optimality conditions
- Convexity and strong convexity
- GD and SGD
- Quick statements:
 - SGD on general functions: wild wild world; no guarantee whatsoever.
 - SGD on convex functions: with step-sizing annealing, can be shown to converge to local/global min.
 - GD on convex functions: can converge to local/glocal min with appropriately chosen fixed step size.
 - GD on strongly convex functions: same as above; additionally, easier step-size calculation, faster convergence, and converges to unique global min.

Regression and Regularized Regression

Ordinary, ridge, lasso, and interpretations

Ordinary Linear Least Squares (OLS)

Given training data $S = \{(x_1, y_1), ..., (x_N, y_N)\}$ where $x \in \mathbb{R}^d, y \in \mathbb{R}$

$$egin{align} \min_{w} \quad L(w) := \sum_{i} (y_i - w^T x_i)^2 = \|Xw - y\|^2 \ X \in \mathbb{R}^{N imes d}, \; y \in \mathbb{R}^N, w \in \mathbb{R}^d \quad \sum_{\forall L(w) = 2X^T X w - 2X^T y}^{L(w) = w^T X^T X w - 2X^T y} \ \end{array}$$

 $w = (X^T X)^{-1} X^T y$

Exercise: Observe that if using nonlinear features $\phi(x)$, we obtain $(\Phi^T\Phi)^{-1}$

Question: What if d > N?

$$w = (X^T X)^{-1} X^T y$$

Rank deficiency; no longer invertible

Exercise: If $d \le N$, are there any situations under which we still would lose invertibility?

Yes, if there's so-called colinearity among features, we still lose invertibility

What about a linear algebra trick?

Trick: Replace $X^TX \mapsto X^TX + \lambda I$

(since X^TX is positive semidefinite, adding λI with $\lambda > 0$ guarantees invertibility, refer to recitation 1)

$$w = (X^T X + \lambda I)^{-1} X^T y$$

"Nudge" to makes X^TX non-singular – this was the original motivation for ridge regression (Hoerl and Kennard, 1970)

Ridge Regression: regularized least squares

Given training data $S = \{(x_1, y_1), ..., (x_N, y_N)\}$ where $x \in \mathbb{R}^d, y \in \mathbb{R}$

$$\min_{w} L(w) := \|Xw - y\|^2 + \lambda \|w\|^2$$

$$X \in \mathbb{R}^{N \times d}, \ y \in \mathbb{R}^N, w \in \mathbb{R}^d, \lambda > 0$$

$$w = (X^T X + \lambda I)^{-1} X^T y$$

Q: This regularization also called "weight-decay". Why?

Importantly, adding a

$$\lambda \|w\|^2$$

$$\lambda > 0$$

makes the objective function having a unique solution. (How?)

Other Forms/Norms of Regularization

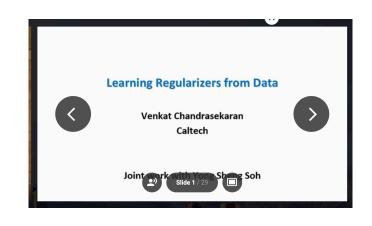
$$\min_{w} \quad \frac{1}{N} \sum_{i=1}^{N} (y_i - w^T x_i)^2 + \lambda \|w\|_p^p$$

p=2: Ridge regression; p=1: LASS0

$$\min_{w} \frac{1}{N} \sum_{i=1}^{N} (y_i - w^T x_i)^2 + \lambda \Omega(w)$$

 Ω : norm, nuclear norm, atomic norm, and many others!

Food for thought: Which regularizer should we use? when? why?



1-dimensional for insight

Ridge leads to "shrinkage"

minimize
$$(y-w)^2 + \lambda w^2 \Rightarrow w = \frac{g}{1+\lambda}$$

L1-reg causes "thresholding"

minimize
$$(y - w)^2 + \lambda |w|$$

$$w = \begin{cases} y - \frac{\lambda}{2} & \text{if } y > \frac{\lambda}{2} \\ y + \frac{\lambda}{2} & \text{if } y < -\frac{\lambda}{2} \\ 0 & \text{if } y \in [-\frac{\lambda}{2}, \frac{\lambda}{2}] \end{cases}$$

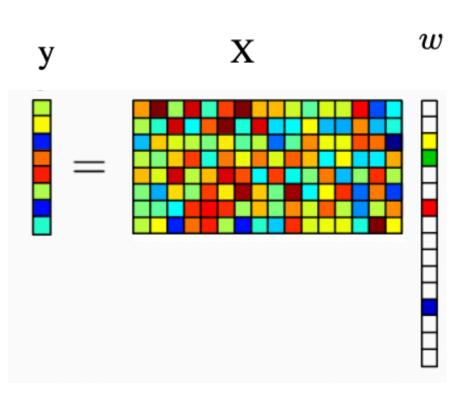
Thus, small values are pushed to 0. Because of this property, it is widely used for obtaining "sparse solutions"

L1-norm regularization: sparsity

- LASSO = Least Absolute Shrinkage and Selection Operator
- Automated selection of "relevant features"
- A large number of features is useful to capture complex models, e.g.
 - variety of representations for capturing structure of image
 - or, higher order polynomials
- But limited data does not allow meaningful selection
- Regularization like Ridge Regression tends to select everything
- LASSO, on the other hand, tries to choose sparsest model parameter

L1-regularization: optimization interpretation

Let w be a vector in \mathbb{R}^n . We define the ℓ_0 pseudo-norm by:



$$\|\mathbf{w}\|_0 = \#\{i : \mathbf{w}_i \neq 0\}$$

L1-regularization

Can be thought of as a convex relaxation to

L0 pseudo-norm

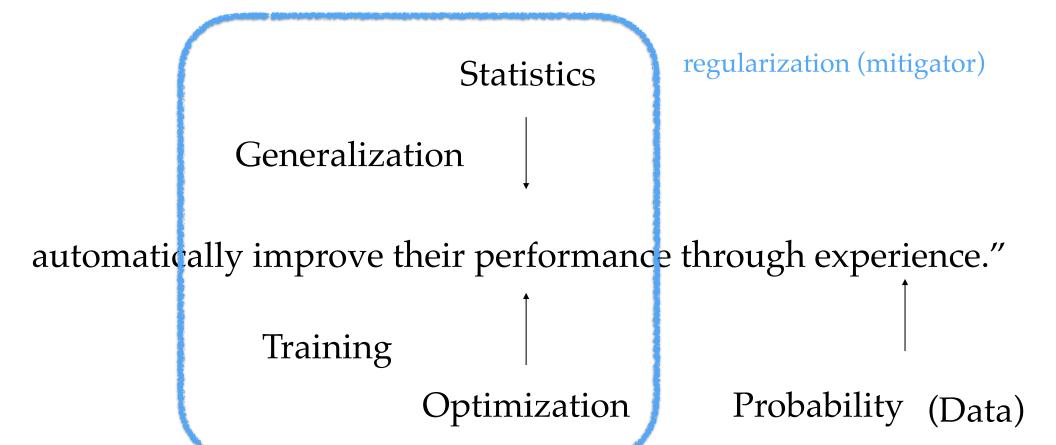
Similar dea generalizes to matrix world too:

- Matrix l_0 pseudo-norm: rank(A)
- Matrix l_1 norm (nuclear norm): $||A||_* = \operatorname{trace}\left(\sqrt{A^*A}\right) = \sum \sigma_i(A)$

https://en.wikipedia.org/wiki/Compressed_sensing

Regularization: the big picture role

"ML is concerned with computer programs that



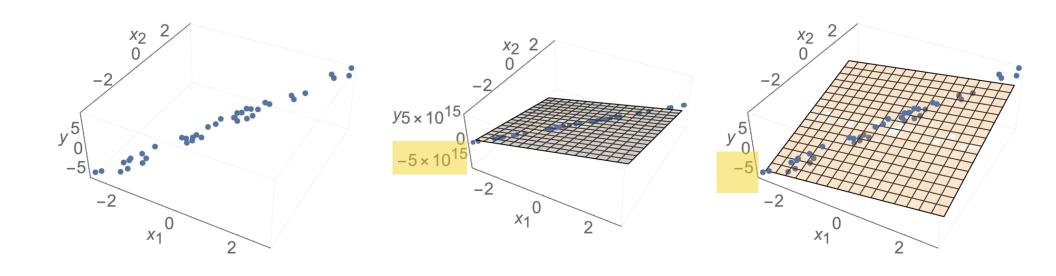
Regularization: Curb your complexity

Here we seek to minimize the *regularized empirical risk*

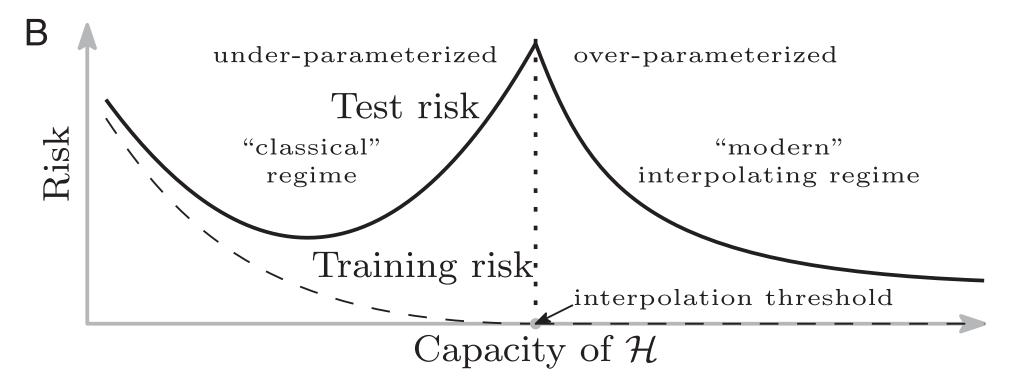
$$\min_{h\in\mathcal{H}} L_S(h) + \lambda R(h),$$

where $\lambda \geq 0$ is a hyper-paramter that regulates the bias-complexity tradeoff.

How?



ERM: Bias-Complexity Tradeoff



"Modern" viewpoint on generalization: the double-descent curve

Reconciling modern machine-learning practice and the classical bias-variance trade-off

Mikhail Belkin^{a,b,1}, Daniel Hsu^c, Siyuan Ma^a, and Soumik Mandal^a

Implicit regularization of GD/SGD

Assume linear model y = Xw and consider ERM

SGD update

$$w_{t+1} = w_t - \alpha g_t x_t$$

Here g_t is the gradient of the loss at the current prediction

Simple but important observation

If we initialize $w_0 = 0$, then w_t always lies in span of data!

Exercise: verify above claim

Even though general weights are high-dimensional, SGD searches over space of at most dimension *n*, the number of data points.

Suppose we have nonnegative loss with $\frac{\partial \ell(z,y)}{\partial z} = 0$ iff y=z (square-loss satisfies this)

Implicit regularization of GD/SGD

Thus, at optimality we have:

- 1. Xw=y, because total loss is zero ($||Xw-y||^2$)
- 2. $w = X^T v$, for some vector v, because w is in the span of data

$$w = X^T (XX^T)^{-1} y$$

Thus, when we run (S)GD we converge to a very specific solution. This special w turns out to be the *minimum Euclidean norm solution to* Xw=y!

Exercise: Prove that this soln. has minimum Euclidean norm

Suppose
$$\hat{w}=X^T\alpha+v,\quad v\perp x_i$$

Then, $X\hat{w}=XX^T\alpha+Xv=XX^T\alpha$
Thus, $\hat{w}=X^T(XX^T)^{-1}y+v$
whereby, $\|\hat{w}\|^2=\|X^T(XX^T)^{-1}y\|^2+\|v\|^2$

Thanks!

Questions?