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Outline for Today

» Optimization
- Set up and terminology
- Convex and strictly convex functions

- (Stochastic) gradient descent

» Regression and regularized regression
- Ordinary, ridge, lasso regression

- Other regularizers and interpretations

» Regularization
- Mitigating training (optimization) and testing (statistics)
- Explicit regularization

- Implicit regularization
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Gradient Descent Only Converges to Minimizers (Lee et al, 2019)

» Some slides edited from: Tamara Broderick, Stephen Boyd, and Suvrit Sr a



What is Empirical Risk Minimization?

Learner does not know P(X, Y), so true error (Bayes error) is
not known to the learner. However,

» Training Error: The error that the classifier incurs on the
training data

Ls(h) = <o # {i € [N] | h(ox) # 93}

aka empirical risk

» ERM principle: Seek predictor that minimizes Ls (/)
» Pitfall: Overfitting!



Optimization Terminology

(mathematical) optimization problem

minimize  fo(x)
subject to  f;(x) < b;,

e x = (x1,...,Ty,): optimization variables
e fo: R" — R: objective function

e fi:R" - R, i=1,...,m: constraint functions

(Global) optimal solution z* has smallest value of f; among all vectors that
satisfy the constraints

Accommodates Accommodates
maximization: unconstrained: ) .

S Unconstrained more heavily used
maximize — fo(z) minimize  fy(z)

, in numerical solvers and modern ML
subjectto  f;(x) < b; subjectto 0<0



- Feasible solution(s): Any x that satisfies all constraints f.(x) < b,
- Fixed points: Any x where Vf(x) =0

- Local optimal solutions: Any x among feasible solutions that's
smaller than its neighbors

- (Global) optimal solutions: Any x among feasible solutions

that’s globally minimum

- Optimal value: the objective function evaluated at an optimal

solution f,(x*)



Unconstrained Local Optimality Condition

FONC
(First
order

necessary
condition)

SONC
(Second
order
necessary
condition

SOSC
(Second
order
sufficient
condition)

x *is a local minimizer — Vix*) =0

e

example: f(x) = x3at0

J)

N Vi) =0
= &V >0

x *1is a local minimizer

example: f(x) = x> at 0

x *1is a (strict) local minimizer — Vix*) =0

= &V () >0

example: f(x) = x* at 0

f(x),

=X




Positive Semidefinite Matrices

- Definition: An nxn symmetric real matrix A is said to be
positive semidefinite (i.e., A > 0) if x’Ax > 0 for all x in R".
- Or, equivalently:
- All eigenvalues of A are non-negative.
- There exists a factorization A = B'B.

- All 2" — 1 principal minors of A are nonnegative

- e.g.

S HH S 1



Positive Definite Matrices

- Definition: An nxn symmetric real matrix A is said to be
positive definite (i.e., A > 0) if xTAx > 0 for all x in R* and x # 0.
>~ Or, equivalently:
- All eigenvalues of A are positive.
- There exists a factorization A = BB where B is square and
non-singular.

- All n leading principal minors of A are positive.

- e.g.

0 1




The 5 factorization

Matrix World Matrix (o)

Wl A=CR A=UuzvT | Appearing section
Linear Algebra for row rank = column rank SVD: orthonormal basis U,V (in Linear Algebra for Everyone)

Everyone Square Matrix (nxn)

A=l4 5 ¢ Invertible <—> Singular l
det(d) #0 allA#0 | det(d) =o atteast
| oneiA=0
A= [ 1 m A= QR - Triangularize - PA = LU
0 2 Gram-Schmidt =—» U has a zero row
Diagonalizable |
|
A=XAX"T -
A1 1 .
0 2 Normal

ATA = AAT

Semideﬂnite
allA>0 all AT A

Projection [z
P2=P=PT )=10r0

all 4] =1 permutaio?

all Aareroots of 1 ’
7

0 1

\Q

Diagonal A X
Positive '
Definite

At =yzYT «—> At =yztyT
%eudoinverse

(v1.4.3) Drawn by Kenji Hiranabe forall A
with the help of Prof. Gilbert Strang
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Global Optimality Condition

- If objective/constraints are convex functions, any local min is global
min. .
 Mainly why convexity is so beloved in optimization

» When is a function convex and how do we check for it?

A function f : R™ — R is convex if its domain is a convex set and
FOz + (1= A)y) < M(2) + (1 — A) f(y)Ve, y € domain(f), VA € [0, 1]

- Equivalent (sometimes easier to check) condition:

V3f(x) = 0, Vx e dom(f) (i.e., the Hessian is psd Vx € dom(f))

- [demo]



Unconstrained Global Optimality Condition

- Generally, no “easy” way to check global optimality (let alone find solutions).

- Convex functions are a major class of exceptions to the above.

Classical problems Deep learning era
Almost all convex Almost none convex

ML timeline

» Ongoing research on over-parameterization, local vs global min, implicit

convexity, in deep learning

- (Explicit) regularization is usually done by “injecting more convexity”. So let’s

understand convexity a bit.



Convex Functions

* A function fon R™is convex if any line segment
connecting two points of the graph of f lies above or

on the graph
BN
min o]
W . local

[demo]

Convex functions are important because:

Every local minimizer is a global minimizer.



https://shenshen.mit.edu/demos/ConvexFun.html

Convex Functions

Simple examples
Convex functions

Non-convex functions

f is called a concave function if — f is convex N



Common Convex Functions

. All linear(affine) functions f(x) = alx+ b (foranya € R. b € [R)

- Some quadratic functions

~ All norms



. Is a Sigmoid f(x) =
l +e*

 Is ReLU f(x) = max(0,x) convex?

convex?

0:5+

e | o

Y




Strictly Convex Functions

* A function fon R™is convex if any line segment
connecting two points of the graph of flies above-ex

errthe graph

8 -6 -5 -4 -3 -2 -1
-200
4 6 8 -400

Strictly convex functions are important because:

- Every local minimizer is a global minimizer.

- There can be only one unique local / global min.

- Better theoretical properties (e.g., convergence rate).

[Quadratic function demo]



https://shenshen.mit.edu/demos/QuadraticFun.html

(Stochastic) Gradient Descent

Iteratively applies “gradient vector
points to the direction where the

function value increases the fastest”

And hoping to get

Unconstrained (Local) Optimality

FONC
(First
order

necessary
condition)

x *1is a local minimizer

—

ot

example: f(x) = x> at 0

Vix*) =0

fx) = x>




Gradient descent




Gradient descent |

 Gradient Vg f = {%,,%}
+ With® € R™ ! m 1 ARG
Gradient-Descent (O, N, f, Vo f,e¢
Initialize O =@,
Initialize t = 0
repeat
t =t + 1
Q) — t—1) _ nV@f(@(t_l))
until [f(OW) — f(OF"D) <€
Return O
e Other possible stopping criteria:
 Max number of iterations T
01 — et < ¢
+ Vo f(©W)|| < e




Stochastic gradient descent

« ERM or training error typically can be written as:

f(€)= 3" fi(e)

Stochastic-Gradient-Descent (Onit,n, 1)
Initialize ©0) =@
for t =1 to T |

randomly select i from {1,..,n} é"r"éggbi%ﬁié)
6 = 01~ — (1) Ve /(61 Y)
Return O

init

@(” — @(I/]> — 7]



GD vs SGD

Compare to gradient descent update:
0t = ot—1) _ pVg f(OFD)




Quick Summary

- Optimality conditions
- Convexity and strong convexity

» GD and SGD

 Quick statements:

- SGD on general functions: wild wild world; no guarantee whatsoever.

- SGD on convex functions: with step-sizing annealing, can be shown
to converge to local/global min.

- GD on convex functions: can converge to local/glocal min with
appropriately chosen fixed step size.

- GD on strongly convex functions: same as above; additionally, easier
step-size calculation, faster convergence, and converges to unique
global min.



Regression
and Regularized Regression

Ordinary, ridge, lasso, and interpretations



Ordinary Linear Least Squares (OLS)

Given training data S = {(x{,y{), ..., (Xy, yy) } Where x € IRd,y e R

min L(w) := Zz(yz —w'z;)? = || Xw -y

w

L(w) =w! XTXw — 2wl XTy + yT
XGRNXd,yERN,UJERd ()_ y+yy

VL(w) =2XTXw —2XTy
w=(X"X)"1 X"y

Exercise: Observe that if
using nonlinear features

Question: What if d > N? ¢(x), we obtain (PTD)!

w= (X I'x )X Ty Exercise: If d < N, are there any situations
under which we still would lose invertibility?
_Rank deficiency; no longer invertible Yes, if there’s so-called colinearity

among features, we still lose invertibility



What about a linear algebra trick?

Trick: Replace X' X —~ XTX + A1

(since X TXis positive semidefinite, adding AI with A > 0 guarantees invertibility, refer to recitation 1)

w=X'X+A)"XTy

“Nudge” to makes X' X non-singular — this was the original motivation for
ridge regression (Hoerl and Kennard, 1970)



Ridge Regression: regularized least squares

Given training data S = {(x{,y{), ..., (Xy, Yy) } Where x € R4y eR
min  L(w) = |[Xw -yl +/Xf]?
XeRV* yeRY weRIA>0

w=X'X+1D"'XTy

Q: This regularization also called “weight-decay”. Why?

Importantly, adding a
Aw]|?

A>0
makes the objective function having a unique solution. (How?)




Other Forms/Norms of Regularization

min
p=2: Ridge regression; p=1: LASSO
. 1 N
min —Z (y; — wh2;)? + AQ(w)
w N 1=1

QQ: norm, nuclear norm, atomic norm, and many others!

Food for thought: Which regularizer
should we use? when? why?



https://slideslive.com/38922413/learning-regularizers-from-data?locale=en

1-dimensional for insight

Ridge leads to “shrinkage”

minimize (y —w)* +w® = w=7 )

L1-reg causes “thresholding”

minimize (y — w)? 4+ Aw|

( .
y—% 1fy>%
w=<y—|—% ify<—%
. A A
\O 1fy€[—§,§]

Thus, small values are pushed to 0. Because of this property, it is
widely used for obtaining “sparse solutions”



L1-norm regularization: sparsity

- LASSO = Least Absolute Shrinkage and Selection Operator

- Automated selection of “relevant features”

- A large number of features is useful to capture complex models, e.qg.
- variety of representations for capturing structure of image

- ofr, higher order polynomials

- But limited data does not allow meaningful selection

- Regularization like Ridge Regression tends to select everything

- LASSO, on the other hand, tries to choose sparsest model parameter



L1l-regularization: optimization interpretation

Let w be a vector in R". We define the £, pseudo-norm by:

X w o wlo = #{i Wi # 0}

L1-regularization
Can be thought of as a convex relaxation to
LO pseudo-norm

HEE EEEEE EE EEE

Similar dea generalizes to matrix world too:
- Matrix [, pseudo-norm: rank(A)

. Matrix [;norm (nuclear norm): ||A||« = trace <\/ A*A) = Z o.(A)

https:/ /en.wikipedia.org/wiki/Compressed_sensing


https://en.wikipedia.org/wiki/Compressed_sensing

Regularization: the big picture role

“ML is concerned with computer programs that

Statistics } regularization (mitigator)

Generalization |

automati¢ally improve their performance through experience.”

Training

Optimization | Probability (Data)



Regularization: Curb your complexity

Here we seek to minimize the reqularized empirical risk

] Lc(h AR (h
nin s(h) + AR(h),

where A > 0 is a hyper-paramter that regulates the
bias-complexity tradeoff.

How?




ERM: Bias-Complexity Tradeoff

under-parameterized

Test risk

“classical”
regime

over-parameterized

“modern”
interpolating regime

~ Training risk:
~

- . _interpolation threshold

—_—

“Modern” viewpoint on generalization: the double-descent curve

Reconciling modern machine-learning practice and
the classical bias—variance trade-off

Mikhail Belkin®?', Daniel Hsu¢, Siyuan Ma?, and Soumik Mandal?



Implicit regularization of GD/SGD

Assume linear model y = Xw and consider ERM

SGD update
W1 = W — 08X,

Here g, is the gradient of the loss at the current prediction

Simple but important observation
Even though general weights are high-

It we lnltlalllze V_VO = 0, then dimensional, SGD searches over space of
w, always lies in span of data! at most dimension n, the number of data
5 points.

Exercise: verify above claim

07 (z,y)
0z

(square-loss satisfies this)

Suppose we have nonnegative loss with = 0iff y=z



Implicit regularization of GD/SGD

Thus, at optimality we have:
1. Xw=y, because total loss is zero (|| Xw — y||?)
2. w = X"y, for some vector v, because w is in the span of data

w= XXXy

Thus, when we run (S)GD we converge to a very specific solution. This
special w turns out to be the minimum Euclidean norm solution to Xw=y!

~ Suppose w = Xla+v, v1 X;
Exercise: Prove that this soln. N T _ T
has minimum Euclidean norm Then, Xw = XX a + Xv = XX"«a
Thus, w = XT(XXT)"ly + v

whereby, [|[W]12 = [ XTXXT)"1y||2 + ||v]||?



Thanks!

Questions?



