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> Markov Decision Processes
- Definition
- Value Functions
- Policy Evaluation
- Optimal value functions
- Value lteration

- QValue Functions and Q-value iteration

* Reinforcement Learning
- Formulation

- Q-learning



> More RL-flavored presentation:

- Reinforcement Learning: An Introduction, Sutton and Barton; The MIT Press, 2018.
Chapter 3,4, 6

* More control- and optimization-flavored presentation:

- Dynamic programming and optimal control; D. P. Bertsekas; Athena Scientific, 2012.
Volume [, Chapter

> More planning and Al-flavored presentation:

- Artificial Intelligence: A Modern Approach; Russell and Norvig; Pearson, 202 1. Chapter
16.1, 16.2,

- Algorithms for Decision Making; Kochenderfer; Wheeler, and Wray, The MIT Press, 2022.
Chapter 7.

- Some slides adapted from: Devavrat Shah, Leslie Kaelbling, Philip Isola, and
Pieter Abbeel


http://incompleteideas.net/book/RLbook2020trimmed.pdf
http://www.athenasc.com/dpbook.html
http://aima.cs.berkeley.edu
http://www.apple.com

Recent (Deep) RL Highlights

—— [ ] [ ) n m = | | o . 1 n_n = [ | |
Discovering faster matrix multiplication
algorithms with reinforcementlearning
Size Best method Best rank AlphaTensor rank
(n, m, p) known known Modular Standard
https://doi.org/101038/s41586-022-05172-4  Alhussein Fawzi'**, Matej Balog'?, Aja Huang'?, Thomas Hubert'?, 2,2,2) (Strassen 1969)2 7 7 7
rocaived: 2 October 2021 Bernardino Romera-Paredes'?, Mohammadamin Barekatain', Alexande — : "
eceived: £ Uctober Francisco J. R. Ruiz', Julian Schrittwieser', Grzegorz Swirszcz', David Si 3,3,3) (Laderman, 1976) 23 23 23
Acce.pted: 2A.ugust 2022 & Pushmeet Kohli' @, 4, 4) (Strassen, 1 969)2 49 a7 49
Published online: 5 October 2022 2,2,2)® (2,2,2)
(5,5,5) 3,5,5) + (2,5, 5) 98 96 98
a b c
m,=(a,+a,)b,+b,) (2,2,3) 2,2,2)+(2,2,1) 11 11 11
m, = (a,+a,)b, 2,2,4) 2,2,2)+(2,2,2) 14 14 14
i 2,2, 5) 2,2,2) +(2,2,3) 18 18 18
m,=a,(b,-b,) U= .0
Al At Bt (2,3,3) (Hopcroft and Kerr, 1971) 15 15 15
m,=a,(by~b,) (2,3,4) (Hopcroft and Kerr, 1971)'® 20 20 20
m, = (@, +8,) b, (2,3,5) (Hopcroft and Kerr, 1971)'®¢ 25 25 25
(2,4,4) (Hopcroft and Kerr, 1971)'® 26 26 26
Mg =(ay~-a,)(b, +b,) V= (2,4,5) (Hopcroft and Kerr, 1971)'¢ 33 33 33
m, = (a,=a,)( by +b,) (2,5,5) (Hopcroft and Kerr, 1971)'® 40 40 40
Cy=my +m,-mg +m, (3,3,4) (Smirnov, 2013)18 29 29 29
(3, 3,5) (Smimov, 2013)18 36 36 36
Up ™ R W = (3, 4,4) (Smimov, 2013)18 38 38 38
8, a a a, Cy =My +m, 3,45  (Smimov, 2013)" 48 47 47
(3, 5,5) (Sedoglavic and Smimov, 2021)'958 58 58
Ca=My=My+My+m,
4,4,5) (4,4,2) + (4,4, 3) 64 63 63

6 4,5, 5) 2,55 ®(2,1,1) 80 76 76
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Research area initiated in the 1950s (Bellman), known under various names (in various communities):
- Reinforcement learning (Artificial Intelligence, Machine Learning)

- Stochastic optimal control (Control theory)

- Stochastic shortest path (Operations research)

- Sequential decision making under uncertainty (Economics)

Markov decision processes, dynamic programming

Control of dynamical systems (under uncertainty)

A rich variety of (accessible & elegant) theory/math, algorithms, and applications/illustrations

Diverse community leads diverse notations.VVe will use the most RL-flavored.
Many moving pieces, often times, nuanced details. Try draw comparisons.

Stop by office hours if having any questions.



Recall: Multi-armed Bandits

- k-armed bandit: k£, number of action choices

- A,: the action selected on time step ¢

- Each action returns a reward

- R,: the reward received for selecting q,

- drawn from an unknown reward distribution

- Goal: pick actions to maximize e.g.

T

sum of rewards max ) E[R|A]
ALA,. AT

=1

I « .
or, average expected rewards max — ) E[R|A] With T — oo
ApAg. A 14




FEYNMAN'S ORIGINAL RESTAURANT PROBLEM IT'S A GAMBLE.
has recently been deciphered from his notes. &
READ MORE HERE W

[https://www.feynmanlectures.caltech.edu/info/exercises/Feynmans_restaurant_problem.htm!
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‘Bandits problems:

'» Hard: unknown rewards distribution.

= =i (Face “exploration vs. exploitation”.)
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https://www.feynmanlectures.caltech.edu/info/exercises/Feynmans_restaurant_problem.html
https://www.feynmanlectures.caltech.edu/info/exercises/Feynmans_restaurant_problem.html

Classification of Decision-Making Scenarios

Unknown Multi-Armed Reinforcement
Model Bandits Learning
Known Stochastic Markov Decision
Model Optimization Process

Actions Don’t  Actions Change
Impact State State

Here,“model’, or sometimes “world model’, refers to transition model and/or rewards model.
See next slide for precise definition.



Markov Decision Process

» &:a state space which contains all possible states s of the system.

v

</ an action space which contains all possible actions a an agent can take.

v

P(s’| s, a): the probability of transition from state s to s’ if action a is taken.

> R(s, a):a function that takes in the (state and action) and returns a real-valued reward.

Sometimes, also:
~ §q: initial state.

- Obijective version (may involve a y € |0,1]: discount factor (details later), and/or T

horizon. Details later).



MDP as a graphical model

Reward 7 Q . . . ‘
Action @ ﬁ ‘/ ‘/ ‘/ (N O
State S () () () ® (O

timé

Trajectory (aka experience, rollout) 7 = (SQ, aop,7o,S1,a1,71, - - -

Transition P(s’| s, a)
Reward R(s, a)



MDP Assumptions and Comments

Reward 7 O O O O O O O
saion o ) | o o  { A

State S (O—(O—O—O—O—(O—0O

time

Trajectory (aka experience, rollout) 7 = (80, aop,70,S1,a1,71, - . )

~ Markov Assumption (Memory-less)
P (St+1 =s'|s,a,s,_1,a, i, ...SO) =P (Sr+1 =s'|s, at)
- Full-observability of states (if this is violated, would become POMDP)

> Policy 7(s) can be thought of feedback-control law. Policy + MDP = Markov
chain.

~ Notice the sources of randomness in 7



MDP Goal

» Find a policy 7 : § — A, such that:

‘[ZZO v'R(s,, (s,) | sy = s] is maximized for all s,

- This objective is the “infinite-horizon discounted sum of rewards’ setting

THEORY AND RECENT EVIDENCE ON THE MERITS OF

Need 0 <y < 1 to get a finite sum. But discolfit"¥1als &gt $&UNT RATE

v

nefits and costs that take place over time requires discounting those amounts to present value equivalents.

Weighing b
- Trad eOff betwee N near-term versus fa - ari?y@@aatrﬁwaf Srount rate which can adjust for the fact that resources are more valuable today thanin Y =

the future if consumers prefer to consume today rather than wait, or if firms could be earning a positive return on 0.93
invested resources. Current guidance from the office of management and budget requires using both a 7 percent and 3 ’

- ACt I | ke ¢ C om PO un d » | nterest rate percent real discount rate in regulatory benefit-cost analyses. This issue brief reassesses the current choice of discount  OFf

rates and methodologies for selecting the 3 percent and 7 percent rates. Empirical evidence suggests that real interest 0.97
rates around the world have come down since the last evaluation of the rates, and new theoretical advances considering ’

- As if the process terminates with probability 1 — y after every time-step
- Many objective variations exist. E.g., infinite-horizon non-discounted average rewards; finite-
horizon sum of rewards; finite-horizon un-discounted sum of rewards (this is equivalent to

adding an absorbing state in the infinite-horizon counterpart).

> For the rest of this

v

These objective settings differ mostly in theoretical guarantees. lecture:
- & is discrete and finite

v

&, o, and & setup also affect theoretical guarantees, but they also affect computation. - ‘de‘:‘:"et.e.a:d finite
- 7T IS deterministic




Example: Grid World

3 (Almost deterministic) Transitions:

- Normally, actions take us deterministically to the “intended” state.
E.g.,in state (I,1), action “North” gets us to state (|,2)

- If an action would take us out of this world, stay put

-10

- In state (3,2), action “North” leads to two possible next state:
- 80% chance ends in (3,3)

- 20% chance ends in (2,3)

State space: 9 cells Deterministic Rewards:

Actions space: {North, - State (3,3), any action gets reward +|
South, East, West}

Discount y = 0.9

- State (3,2), any action gets reward -10

- Any other (state, action) pairs get reward 0



State-Value V Functions

For any given policy r, the state-value functions are

VA(s) := E LY " V' R(s, (s)) | 59 = 51, Vs

'Bellman equations |

- Policy evaluation: @—> Policy Evaluation —>@

- For infinite-horizon discounted rewards setup, evaluation amounts to
solving a set of | S| linear equations




Optimal Policies and Optimal Values

> A policy 7 is optimal if its value functions are no smaller than the value function of any other policy at
all states V* (s) > VXs), Vse€ S, Vx

- One way is to enumerate every possible policies, evaluate them and compare. But very inefficient.

' Recallthatforany gven poliY | B ellman equations

V7(s) = E[R(s, n(s))] + yzs, p(s’| s, w(s)V*(s)), Vs

Bellman optimality equations |

V*(s) = max(E[R(s, a)] + yzs, p(s’|s,a)V*(s’)), Vs

this would amount to solving a set of | S| non=linear equations (how-to later)



Infinite-horizon Summary

* Definition: For any given policy 7z, the state-value functions are

VE(s) := E LY " V' R(s, (s)) | s = 51, Vs

- Bellman equations

Vi(s) = E[R(s, ()] + v 2., p(s'| s, m()V(s), Vs

- Bellman optimality equations

VE(s) = max(E[R(s, a)] + 7 2., p(s'| s, @)V*(s"), Vs

»+ There exists a unique V* satisfying the Bellman optimal equations.

* There exists a stationary deterministic optimal policy 7* (more on how to

find this based on V* later).The optimal policy might not be unique.



Finite-horizon Variant

* Definition: For any given policy 7, the state-value functions are

Vi(s) :=E [Z 0 }/tR(St, n(s,) | sy = s, Vs, where horizon-0 values are all 0.

- Bellman recursion

Vi(s) = E[R(s, n(s))] + }’ZS, p(s’|s, n(s)V7i_(s), Vs

- Bellman optimality recursion

Vi(s) = max(E[R(s, a)] + y 2. P(s'| s, a)VE_((s), Vs

* For a fixed horizon, there exists a unique optimal value function.

» For a fixed horizon, there exists a deterministic optimal policy 7*; the optimal policy may not

be unique.

- Optimal value function and optimal policies generally is non-stationary, i.e., depend on horizon.



Value Iteration

Bellman optimality equations

VE(s) = mglx( -[R(s,a)] + }/ZS, p(s’| s, a)V*(s")), Vs

VALUEITERATION(S, A, P, R, Y, €)

1 V(s)=0forsed
2 while True:

return V..,
V — View
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where [V1 — Vo| = max|Vi(s) — Vao(s)|.
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v

Guaranteed to converge to the infinite-horizon optimal value function V*.

Value Iteration - Comments

(under mild assumptions like rewards bounded in expectation)

Max-norm error |V — V*|decreases monotonically per iteration.

Convergence holds under any initialization.

When initialized to 0, run line 4 for k iterations, the latest value function

would be the optimal horizon-k optimal value function V*.

Policy extraction: Given optimal V*(s), how to back out an optimal policy 7*?

r*(s) = arg max

: [R5, )]

1T, Pl V)

- E.g., V*(s) of our grid world:

8.1

10

1.29

8.1

-1.18

6.561

1.29

6.561




State-Action-Value Q Functions

- Definition: For any given policy , the state-action-value functions are

0% (s,a) ;== E[R(s,a)] + 7Y p (5’| s,a) V' (s),Vs,a

> Optimal O*(s, a) is then expected sum of discounted rewards for being in

state s, taking an action a, and act optimally thereafter.

- Optimal quantities must satisfy:

- O*(s,a) = E[R(s,a)] + yzs,p (S’ | s, a) V* (s7)

- V*(s) = max , Q*(s, a)

. Comparing with 7*(s) = arg max [

easier to extract optimal policy.

-|R(s,a)] + yzs,p(s’\ s,a)V*(s") | we saw previously,



Q Value Iteration

- Recall that optimal quantities must satisfy:
- O%(s,a) =E[R(s, )l + 7 X, p (s'| s,a) V*(s)
- V¥(s) = max,Q*(s,a)

. Similar equationsQ(s a) =

QVaLuelteraTioN(S, A, P, R, v, €)

1 Q(s,a)=0forse§,ae A
2 while True:

3 for 865 e

4 " Qnew(s, @) < E[R(s,a)] +v 3, p(s'|s,a) maxQ (s’, a’)
5 if |Q — Qnew‘<€ .......................................................................................

6 return Qe

4 Q ¢ Qnew

where [Q — Q2| = max; o|Q1(s, a) — Qz(s, a)l.



Q Value Iteration - Comments

> Guaranteed to converge to O* (under mild assumptions like rewards
bounded in expectation)

- Can initialize to any value.
> Max-norm error | Q — O* | decreases monotonically per iteration.
> When initialized to O, iterations are finite-horizon value functions.

- Can execute “in place” (don't need a separate QJnew)-

> Can randomly pick (s, a) to update, rather than doing it systematically.

> (If |Q — Ohew! <ethen |Q—0*| <ey/(1 —y).)
. (Define greedy policy with respect to value function z,(s) = arg max Q(s, a).

Then if |O(s,a) — O*(s,a)| < e, \VEQ — V¥ < 2e.)

- Serves as the basis for Q-learning in RL (coming up).



v

v

v
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v
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Definition

Policy andV value

Policy evaluation (via Bellman Linear Equations)

Finding optimal value functions (requires Bellman non-linear equations)
Finite-horizon is non-stationary, need to replace equations with recursions
But both infinite- and finite-horizons can be solved exactly via value iteration
(V) value iteration cumbersome to extract optimal policy

Q values

Q value iteration and policy extraction



Unknown
Model

Multi-Armed Reinforcement
Bandits Learning

Known
Model

State space: 9 cells

Actions space: {North,
South, East,West}

Discount y = 0.9

Stochastic Markov Decision
Optimization Process

Actions Don’t  Actions Change
Impact State State

Example: Grid World .
? (in RL)

(Almost deterministic) Transitions:

- Normally, actions take us deterministically to the “intended” state.

E.g., in state (l,1), action “North” gets us to state (l,2)
- If an action would take us out of this world, stay put
- In state (3,2), action “North” leads to two possible next state:
- = B chance ends in (3,3)
¥ & chance ends in (2,3)

Deterministic Rewards:

- State (3,3), any action gets reward

- State (3,2), any action gets reward

- Any other (state, action) pairs get reward 0

Reinforcement Learning

Markev_Decision P
RL

> &’:a state space which contains all possible states s of the system.

- & an action space which contains all possible actions a an agent can take.

> PGssya)-the-probability of transition-from-states-to-s-if-actiona is taken.
* R(s,a):a function that takes in the (state and action) and returns a real-valued reward.

Sometimes, also:
» Sp: initial state.
> Obijective version (may involve a ¥y € [0,1]: discount factor (details later), and/or T:

horizon. Details later).

RL—MDP Goal

> Find a policy 7 : § — A, such that:

IE[Z:O Y'R(s,, n(s,) | sy = s] is maximized for all s



Thanks!

Questions?



