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Supervised Learning



Classification - Terminology

Classification

Learn from training data to predict accurately on unseen data

Basic terminology
I Data domain: An arbitrary set X . Often just X = Rd

(assuming that the members of X are represented via
feature vectors; some authors write �(x) to emphasize this)

I Label domain: A discrete set Y ; e.g., {0, 1} or {�1, 1}.

I Training data: A finite collection S = {(x1, y1), . . . , (xN, yN)}
of pairs drawn from X ⇥ Y

I Classifier: A prediction rule h : X ! Y (we’ll write hS to
emphasize dependence of h on the training data). We call h

a hypothesis, prediction rule, or classifier.
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What about Regression?

y ∈ {0,1,…, k}Classification

y ∈ ℝRegression
Think of as  
categories, not as 
numbers — there’s no 
sense of ordering.

k

Most of today’s discussion focuses on classification; but the generalization to

regression is straightforwardly.



Classification - An assumption
Probability model, setup

I Data distribution: Joint distribution P on X ⇥ Y .
Important assumption: P is fixed but unknown.
We will write (X,Y) to denote a random variable with X taking
values in X and Y taking values in Y .

I Class conditional distribution: Let Y = {0, 1}. We define

⌘(x) := P(Y = 1 | X = x) = E[Y | X = x].

I Measuring success: Error of classifier aka risk aka
generalization error:

L(h) ⌘ LP(h) := P(h(X) 6= Y)

i.e., the error of classifier h is the probability of randomly
choosing a pair (x, y) ⇠ P for which h(x) 6= y
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Think about when and how the above assumption can be violated, 
and what might we want to do to handle those situations


- If  is not fixed… 

- If  is known… 


ℙ
ℙ



Classification - Measuring Success
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Question: Which classifier does the “best” job?

Bayes Classifier

I Goal: Minimize the risk / misclassification error
Intuitively, picking the most likely class given the data makes
sense (notice, not limited to binary classification)

Bayes classifier

h
⇤(x) :=

(
1, if ⌘(x) = P(Y = 1|X = x) > 1

2 ,

0, otherwise.

Theorem (BC optimality). For any classifier h : Rd
! {0, 1},

P(h⇤(X) 6= Y)  P(h(X) 6= Y), i.e., h
⇤ is an optimal classifier.

[Proof on black-board]
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Bayes Classifier Optimality
ℙ(h(X) ≠ Y ∣ X = x) − ℙ(h*(X) ≠ Y ∣ X = x)Hint: Consider

=



Bayes Classifier: some thoughtsBayes Classifier

Exercise: Verify the following useful formulae

L
⇤ = inf

h:Rd!{0,1}
P(h(X) 6= Y)

= E[min {⌘(X), 1 � ⌘(X)}]

= 1
2 �

1
2E[|2⌘(X)� 1|].

(Hint: Use notation from above proof)
We call L

⇤ the Bayes Error (the minimum error possible any
classifier; this is an idealized quantity)
Question: What makes the Bayes Classifier idealized?

If we build a generative model of (X,Y), then we can likely
obtain a Bayes Classifier (will come back to this point in a
couple of lectures)
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Question: Why is this “idealized?” 



More practical approach?



Nearest Neighbor Classifier
Training: None (or rather: memorize the data!)

Testing:  for each test data point ‘x’ do:

find the ‘k’ points in training data nearest to ‘x’

predict label ‘y’ for ‘x’ by taking (possibly weighted) 
majority label of the ‘k’ points from above


k = 1 k = 5

What would the  case look like?k = 9



Nearest Neighbor Classification

k-NN can learn complex nonlinear classifiers
Image: Elements of Statistical Learning Theory



1-nearest-neighbor vs. BayesNN and Bayes

Asymptotically, it can be shown that the error of the NN
classifier is

LNN = E[2⌘(X)(1 � ⌘(X))].

Theorem. LNN  2L
⇤ (where L

⇤ is Bayes error)
Proof Sketch. Let A(X) = min(⌘(X), 1 � ⌘(X)). Notice that
2⌘(1 � ⌘) � A; thus we have

L
⇤
 LNN = 2E[A(X)(1 � A(X))]

 2E[A(X)]E[1 � A(X)] (Justify!)
= 2L

⇤(1 � L
⇤)

 2L
⇤.

In other words, asymptotically (as N ! 1), a NN classifier
comes within a factor 2 of the best possible (Bayes) classifier.
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1-nearest-neighbor



Classification: what would we like?

NN and Bayes: Remarks

I Read Ch. 19 of [SSS] for additional analysis of NN methods
I Check out Explaining the Success of Nearest Neighbor Methods

in Prediction by George Chen and Devavrat Shah (2018).
Ideally, we want non-asymptotic results, to better
understand how many examples (i.e., how large N) do we
need to attain a certain error rate
We may also have some prior knowledge about (X,Y) that
we may wish to incorporate
Noise, robustness, adversarial learning, and other concerns
All of these can be accommodated; let us look at another
more explicit paradigm
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Empirical Risk Minimization



What is Empirical Risk Minimization?Empirical Risk Minimization

Learner does not know P(X,Y), so true error (Bayes error) is
not known to the learner. However,
I Training Error: The error that the classifier incurs on the
training data

LS(h) :=
1
N
# {i 2 [N] | h(xi) 6= yi} ,

aka empirical risk

I ERM principle: Seek predictor that minimizes LS(h)
I Pitfall: Overfitting!
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Overfitting: Pitfall of ERM

y=0 y=1

x distributed uniformly in the unit square

S = {(xi, yi) | 1  i  N}
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h(x) =

(
yi, if x = xi

0, otherwise
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✴ This classifier has 0 empirical risk!

✴ As bad as a random guess (error probability on unseen data =1/2)



How to tackle overfitting?ERM with inductive bias

I Rather than give up on ERM, we search for settings where it
may actually work.

I Inductive bias: Apply ERM over a restricted search space.
1 Learner chooses a hypothesis class H (i.e., set of predictors it

is going to optimize over) in advance before having seen
any training data

2 ERMH uses ERM to learn h : X ! Y by using S

ERMH(S) 2 argmin
h2H

LS(h)

I Note: Ideally H should be governed by knowledge of data.
But even “simple” choices of H can overfit if we are not careful.
Of course, overly strong inductive bias can lead to underfitting.
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ERM TheoryERM: Theory

Question: When does ERM work? In other words, if we
minimize LS(h), what bearing does that have on L(h)?

Goal of learning theory is to study this (and such) question(s).

Informally, if for all h 2 H, LS(h) is a good approximation to
L(h), then ERM will also return a good hypothesis

LP(hS)  min
h2H

LP(h) + ✏

hS is learned using ERM; both risks over data distrib

I Why may a certain hypothesis class H be “better”? How to
ensure learnability, control overfitting, etc? Let us look at a
fundamental tradeoff that guides us
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Explore: When and why might a certain hypothesis class be “better” for learning?



ERM: bias-complexity decomposition

ERM: Bias-complexity tradeoff

I Error-decomposition: To control overfitting, we introduced
inductive bias. Let us look at a fundamental error
decomposition in ML

LP(hS) = ✏apx + ✏est

Thus, prob of error on random (unseen) data, decomposes into

✏apx := min
h2H

L(h) (APPROX ERROR)

✏est := LP(hS)� ✏apx (ESTIMATION ERROR)
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- Approximation error also referred to as structural error (bias)
- Estimation error also referred to as variance 



ERM: bias-complexity decompositionERM: Bias-complexity tradeoff
I Approx error: Min risk achievable by a predictor in H.

Measures how much risk due to inductive bias (observe,
does not depend on N or S)

I Estimation error: Difference between approx error and
error achieved by the ERM predictor (on test data). This
error arises because training error (empirical risk) is just a
proxy for the true risk.

I Quality of estimation depends on training set size N and on
the “richness / complexity” of the hypothesis class (e.g., for
a finite hypothesis class, estimation error increases as log |H|

and decreases with N).
I Regularization: One way to quantify the complexity of an

individual hypothesis
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ERM: Bias-complexity tradeoff
A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd

!C of the form

h(x )=
NX

k=1

ak�(x ; vk ) where �(x ; v):=e
p
�1hvk ,xi,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N !1, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H1. While it is possible to directly use
H1 [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd

⇥R, we find the predictor hn,N 2

HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

Pn
i=1(h(xi)� yi)

2 over all functions h 2HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm khk

H1
, which is generally

difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.
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“Modern” viewpoint on generalization: the double-descent curve

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd

!C of the form

h(x )=
NX

k=1

ak�(x ; vk ) where �(x ; v):=e
p
�1hvk ,xi,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N !1, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H1. While it is possible to directly use
H1 [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd

⇥R, we find the predictor hn,N 2

HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

Pn
i=1(h(xi)� yi)

2 over all functions h 2HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm khk

H1
, which is generally

difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.
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