6.7900 Machine Learning
(Fall 2023)

Lecture llI: Introduction to
Supervised Learning and
Empirical Risk Minimization



2013

Topic

Intro

Intro: Estimation

Intro: Bayesian methods

Regression

Regression: regularization

Classification: probabilistic models

Classification: Bayesian methods

Classification: Support vector machines

Classification: More SVMs, perceptron

Holiday

Kernel methods: classification

Kernel methods: regression

Exam 1: 7:30 - 9:30 PM

Graphical models

Graphical models: message passing

Graphical models: sampling

Graphical models: parameter estimation

Graphical models: structure learning

Graphical models: temporal

Non-parametric: nearest neighbor, trees

Non-parametric: bagging, boosting

Non-parametric: Bayesian

Holiday

Practicality: feature selection, multi-class

Exam 2: 7:30 - 9:30 PM

Topics: unsupervised learning

Topics: reinforcement learning

Topics: deep networks

Snapshots of history

2019

9/5 | Introduction, Overview, Basics

Supervised learning

9/10 | Classification 1: Optimization, Loss Function, Regularization
9/12 | Classification 2: SVMs & Kernels, Bayes Classifier, ROC, Logistic Regres:
9/17 | Classification 3: Naive Bayes, Generalization

9/19 | Classification 4: VC Dimension

9/24 | Regression 1: Linear / Polynomial Regression, Kernel, Predictive Distrib
9/26 | Regression 2: Bayesian, Shrinkage, Regularization and SGD

10/1 | Neural networks (feed-forward): Theory, Representation Theorem
10/3 | Neural networks: Optimization

10/8 | Neural networks: Structured prediction, Language Modeling Word2vec
10/10 | Neural networks: Robustness to Dataset Shift

10/15 | Holiday

Unsupervised learning

10/17 | Dimensionality Reduction: PCA practice

10/22 | Exam 1 7:30 - 9:30 PM

10/24 | Dimensionality Reduction: PCA theory, NMEF, t-SNE

10/29 | Matrix Estimation

10/31 | Clustering: mixture model, K-means

11/5 | Topic models

11/7 | Variational Learning

11/12 | Deep Generative Models

Probabilistic modeling

11/14 | Sampling, MCMC, Gibbs

11/19 | Gaussian processes, Using prior knowledge about world
Decision making

11/21 | Acting under Uncertainty, Model Predictive Control

11/26 | Markov Decision Processes

11/28 | Holiday

12/3 | Reinforcement Learning, Bandit

12/5 | AlphaGoZero and/or Liberatus

12/10 | Project Presentation

2022

L

introduction

elements of optimization and MLE

S1: regression, regularization, optimization

S1: regression, bias variance

S1: classification, losses, optimization

S1: classification, ERM, PAC learning

U1: unsupervised learning

U1: graphical models

R

iy

: decision problems, bandits

R1: markov decision problems, RL

Exam #1 (in class)

S2: complexity, regularization, generalization

S2: on-line learning, regret

S2: robustness, adversarial

S2: uncertainty, calibration

S2: neural models, overparameterization

S/U: pre-training, contrastive learning

S/U: co-variate shift, domain adaptation

U2: latent variable models, identifiability

U2: variational inference, VAEs

U2: deep generative models, diffusion

MIT Holiday

R2: deep RL, function approximation

R2: deep RL, policy gradient, robustness

Exam #2 (in class)

Contemporary applications and topics

Contemporary applications and topics




Semester at a glance

Sep 7 Introduction
Sep 12 Supervised learning, formulation, ERM
Sep 14 Regularization, optimization
Sep 19 Linear vs nonlinear, bias v/s variance I
Sep 21 PAC intro, finite hypothesis class, infinite hypothesis, VC
Sep 26 On-line learning, regret
Sep 28 Decision problems, bandits
Oct 3 Neural/deep architectures (supervised)
Oct 5 Robustness, stability, adversarial predictions
Oct 12 Uncertainty, conformal prediction

) Oct 17 Complexity, generalization
how it works Oct 19 Oct 19: Quiz #1 (in class) why it works

(method) Oct 24 Unsupervised learning, dimensionality reduction (theory)

Oct 26 Generative models, auto-regressive
Oct 31 Deep generative models, VAEs, GANs
Nov 2 Flows, Diffusion models I
Nov 7 Deep RL, policy gradient, PPO/TRPO
Nov 9 Markov decision problems, Value Based Deep RL, Q-Learning
Nov 14 DQN, Practical Considerations in RL
Nov 16 Covariate shift, domain adaptation I
Nov 21 Few-Shot Learning, transfer learning, in-context learning
Nov 28 Self-supervised learning, masking, contrastive
Nov 30 Foundation models
Dec 5 State-of-the-art LLMs (guest lecture?)
Dec 7 Dec 7: Quiz #2 (in class)
I Dec 12 Deep RL/Al applications




Outline for Today

» Supervised Learning
- Formal setup
- Terminology

- Bayes classifier

- Bayes classifier optimality

- Nearest-Neighbor classifier
- Bayes vs. Nearest Neighbor

~ Empirical Risk Minimization (ERM)
- Formal setup

- Overfitting pitfall

- Inductive bias

- Decomposition
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Supervised Learning

» We can easily illustrate the task by providing a diverse set of examples,
exercising the underlying relation between images and categories

Category (~ 1K)
mushroom
millions of flamingo
images
keeshond

cherry




Classification - Terminology

» Data domain: An arbitrary set X. Often just X = R
(assuming that the members of X" are represented via
feature vectors; some authors write ®(x) to emphasize this)

» Label domain: A discrete set J; e.g., {0,1} or {—1,1}.

» Training data: A finite collection S = {(x1,y1),..., (XN, YN)}
of pairs drawn from X x Y

» Classifier: A predictionruleh : X — Y (we'll write hg to
emphasize dependence of /1 on the training data). We call
a hypothesis, prediction rule, or classifier.

? ? ? ?

*b Learning algorithm




Classification - Terminology

» Data domain: An arbitrary set X. Often just X = R
(assuming that the members of X" are represented via
feature vectors; some authors write ®(x) to emphasize this)

» Label domain: A discrete set J; e.g., {0,1} or {—1,1}.

» Training data: A finite collection S = {(x1,y1),..., (*n,YN)}
of pairs drawn from X x Y

» Classifier: A predictionruleh : X — Y (we'll write hg to
emphasize dependence of /1 on the training data). We call
a hypothesis, prediction rule, or classifier.

*b Learning algorithm

X Yy S h




What about Regression?

Classification 'y & {O, l,..., k}

Regression y - R

Most of today’s discussion focuses on classification; but the generalization to
regression is straightforwardly.



Classification - An assumption

» Data distribution: Joint distribution P on X x ).
Important assumption: P is fixed but unknown.
We will write (X, Y) to denote a random variable with X taking

values in X and Y taking valuesin ).

Think about when and how the above assumption can be violated,
and what might we want to do to handle those situations

- If [P is not fixed...
- If P is known...




Classification - Measuring Success

» Measuring success: Error of classifier aka risk aka
generalization error:

L(h) = Lp(h) == P(h(X) # Y)

i.e., the error of classifier / is the probability of randomly
choosing a pair (x,y) ~ P for which h(x) # vy

» Goal: Minimize the risk / misclassification error

Question: Which classifier does the “best” job?




Bayes Classifier

» Class conditional distribution: Let ) = {0,1}. We define

n(x):=P(Y=1|X=x)=E[Y | X =x.

Bayes Classifier

==

Y = 1|X = x) >D

otherwise————" |

G o) = P(

h*(x) := {é’

Theorem (BC optimality). For any classifier 1 : R? — {0,1},
P(h*(X) #Y) < P(h(X) #Y), i.e., h* is an optimal classifier.




Bayes Classifier Optimality

Hint: Consider P(h(X) #Y | X =x) —Ph*X)# Y | X =x)
=n(z) ([r*(z) = 1] = [A(z) = 1]) + (1 — n(z)) ([r*(z) = 0] — [h(x) = 0])
=(2n(z) — 1) ([r*(x) = 1] — [h(z) = 1])

Proof. Given X = z, the conditional error probability of any classifier ~ may be written as:

Ph(X)£Y|X =2)=1—P(Y = h(X)|X = z)
—1- P =LAX)=1X =2)+P(Y =0,h(X) =0|X = z))
=1— ([a(z) = 1JP(Y = 1|X = z) + [h(z) = O]P (Y = 0|X = z))
=1— ([r(z) =1]n(z) + [h(z) = 0](1 — n()))

where [-] is the Iverson bracket, i.e. [2] = 1 if z = ’true’ and 0 if z = ’false’. Thus, for every z € RY, we have:

P(h(X)£Y|X =2) - P(h*(X) £ Y|X = 2)
= n(z) ([r*(z) = 1] — [a(z) = 1]) + (1 — n(z)) ([p*(z) = 0] — [h(z) =0]).

Since [h*(z) = 0] = 1 — [A*(x) = 1], the above equals to (2n(x) — 1) ([p*(z) = 1] — [h(x) = 1]) which is
non-negative based on the definition of h* (n(z) > 1/2 < [h*(z) = 1] = 1). Thus we have

/ P(h(X) £ Y|X = z)dP(z) > / P(h*(X) £ Y|X = 2)dP(z).

or equivalently, P(h(X) #Y) > P(h*(X) #Y). O



Bayes Classifier: some thoughts

Exercise: Verify the following useful formulae
L*= inf P(h(X) #Y
h:Rdlil{o,l} (H(X) 7 Y)
= Elmin {n(X),1 —n(X)}
=3 — zEll2n(X) = 1.

(Hint: Use notation from above proof)
We call L* the Bayes Error (the minimum error possible any
classifier; this is an idealized quantity)

Bayes Classifier

Class conditional distribution: Let Y = {0, 1}. We define

Question: Why is this “idealized?” ) =P =1]X=x)=EY[X=x]

Bayes Classifier

- _ _ _ i
oy o {1 @) = POy =11 __@
0, otherwise:




More practical approach?
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Nearest Neighbor Classifier

ETraining: None (or rather: memorize the datal)

 Testing: for each test data point ‘x’ do:

| find the ‘k’ points in training data nearest to ‘X’
predict label ‘y’ for ‘X’ by taking (possibly weighted)
majority label of the ‘k’ points from above
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What would the k = 9 case look like?



Nearest Neighbor Classification

k-NN can learn complex nonlinear classifiers
Image: Elements of Statistical Learning Theory



1-nearest-neighbor vs. Bayes

Asymptotically, it can be shown that the error of the 1-nearest-neighbor

classifier is

Lnn = E[2n(X)(1 — n(X))].

Bayes Classifier

‘Theorem. Lyy < 2L* (where L* is Bayes error) W - o ,
L i - » I Class conditional distribution: Let Y = {0,1}. We define

Proof. Given X = z, let X'(n) the closest data point to z amongst given n observations. Then due to X C R¢
(i.e. complete, separable metric space), it can be argued that X’(n) — z as n — oo with probability 1. Further, 7 is
continuous. Therefore, 7(X’(n)) — n(z) as n — oo with probability 1. Let Y’ (n) be the label observed associated

X'(n). Then,
P(hixn(e) # Y|X = 2) = P(Y'(n) £ Y|X = z)
=PY'(n)=1,Y=0X=2)+PY’'(n)=0,Y =1|X =x)
@ p(y'(n) = 1|X = 2)B(Y = 0|X = z) + P(Y'(n) = 0|X = 2)P(Y = 1|X = z)
=n(X'(n))(1 —n(z)) + 1 —n(X'(n))n(z)
— 2n(z)(1 — n(z))
© 2min{n(z),1 - n(z)} max{n(z), 1 - n(z)}

(SC) 2min{n(z),1 —n(z)}.

In above, (a) follows from the fact that Y’(n) and Y are generated independently per our generative model; (b) from
that the fact for @, 8 € R we have a8 = min{a, 8} max{a, }; and (c) from the fact that n(z) € [0,1] as it is
probability. Then, the claim of theorem follows by recalling that the Bayes risk L* = E[min{n(X),1—n(X)}. O

h* (x)

nx)=P(Y=1|X=x)=E]Y|X=1x].

Bayes Classifier

0, otherwise:

_ {1, fn(x) =P(Y=1|X i’ﬂiD

L*= inf P(h(X Y
h:uadlil{o,l} (h(X) #Y)

= E[min {n(X),1 — n(X)}]



Classification: what would we like?

m Ideally, we want non-asymptotic results, to better
understand how many examples (i.e., how large N) do we
need to attain a certain error rate

m We may also have some prior knowledge about (X, Y) that
we may wish to incorporate

m Noise, robustness, adversarial learning, and other concerns

m All of these can be accommodated; let us look at another
]‘\Enore explicit paradigm




Empirical Risk Minimization



What is Empirical Risk Minimization?

Learner does not know P(X,Y), so true error (Bayes error) is
not known to the learner. However,

» Training Error: The error that the classifier incurs on the
training data

Ls(h) := . #{i € IN] | h(x) # i}

aka empirical risk

» ERM principle: Seek predictor that minimizes Lg(h)
» Pitfall: Overfitting!

» Measuring success: Error of classifier aka risk aka
generalization error:

L(h) = Lp(h) := P(h(X) #Y)



Overfitting: Pitfall of ERM

-/
-/
S = {(@i,y) |1 <i < N} .
(yz-, if £ = x; o
h(x) = < ,
0, otherwise
N y=0 y=1

x distributed uniformly in the unit square

* This classifier has 0 empirical risk!
* As bad as a random guess (error probability on unseen data =1/2)



How to tackle overfitting?

» Rather than give up on ERM, we search for settings where it
may actually work.

» Inductive bias: Apply ERM over a restricted search space.

Learner chooses a hypothesis class H (i.e., set of predictors it
is going to optimize over) in advance before having seen
any training data

ERMy uses ERM to learn  : X — Y by using S

ERMy (S) € argmin Lg(h)

heH
Learning
algorithm

S h

» Note: Ideally H should be governed by knowledge of data.
But even “simple” choices of H can overfit if we are not careful.
Of course, overly strong inductive bias can lead to underfitting.



ERM Theory

Question: When does ERM work? In other words, if we
minimize Lg(h), what bearing does that have on L(h)?

Goal of learning theory is to study this (and such) question(s).

Informally, if for all 1 € H, Lg(h) is a good approximation to
L(h), then ERM will also return a good hypothesis

PR
Lp(hg) < min Lp(h) 4 ¢

Explore: When and why might a certain hypothesis class be “better” for learning?

» Training Error: The error that the classifier incurs on the Error of classifier aka risk aka

training data

Ls(h) = x4 47 € IN] | x) # i}

= Lp(h) := P(h(X) # Y)



ERM: bias-complexity decomposition

LP(hS) = €apx T €est
Thus, prob of error on random (unseen) data, decomposes into

€apx 1= %1751 Lp(h) (APPROX ERROR)

€est 1= Lp(hs) — €apx  (ESTIMATION ERROR)

- Approximation error also referred to as structural error (bias)
- Estimation error also referred to as variance

Informally, if for all h € H, Ls(h) is a good approximation to
L(h), then ERM will also return a good hypothesis

< ot
Lp(hg) < min Lp(h) + €



ERM: bias-complexity decomposition

» Approx error: Min risk achievable by a predictor in H.
Measures how much risk due to inductive bias (observe,
does not depend on N or S)

» Estimation error: Difference between approx error and
error achieved by the ERM predictor (on test data). This
error arises because training error (empirical risk) is just a
proxy for the true risk.

€apx 1= irélﬁ Lp(h) (APPROX ERROR)

€est := Lp(hs) — €apx  (ESTIMATION ERROR)

» Quality of estimation depends on training set size N and on
the “richness / complexity” of the hypothesis class (e.g., for
a finite hypothesis class, estimation error increases as log |H|
and decreases with N).



ERM: Bias-complexity tradeoff

A .
under-fitting . over-fitting
. Test risk
A :
2z |
a

N

- ‘Iraining risk
sweet spot. . —

S ~ -
Capacity of

— —

Classical training vs test curve



ERM: Bias-Complexity Tradeoff

under-parameterized

Test risk

“classical”
regime

over-parameterized

“modern”
interpolating regime

~ Training risk:
~

- . _interpolation threshold

—_—

“Modern” viewpoint on generalization: the double-descent curve

Reconciling modern machine-learning practice and
the classical bias—variance trade-off

Mikhail Belkin®?', Daniel Hsu¢, Siyuan Ma?, and Soumik Mandal?



