6.7900 Machine Learning (Fall 2023)

Lecture II: Introduction to Supervised Learning and Empirical Risk Minimization

Snapshots of history

2013

Topic

2019

0/5

introduction
elements of optimization and MLE
S1: regression, regularization, optimization
S1: regression, bias variance
S1: classification, losses, optimization
S1: classification, ERM, PAC learning
U1: unsupervised learning
U1: graphical models
R1: decision problems, bandits
R1: markov decision problems, RL
Exam #1 (in class)
S2: complexity, regularization, generalization
S2: on-line learning, regret
S2: robustness, adversarial
S2: uncertainty, calibration
S2: neural models, overparameterization
S/U: pre-training, contrastive learning
S/U: co-variate shift, domain adaptation
U2: latent variable models, identifiability
U2: variational inference, VAEs
U2: deep generative models, diffusion
MIT Holiday
R2: deep RL, function approximation
R2: deep RL, policy gradient, robustness
Exam #2 (in class)
Contemporary applications and topics
Contemporary applications and topics

Tophe
Intro
Intro: Estimation
Intro: Bayesian methods
Regression
Regression: regularization
Classification: probabilistic models
Classification: Bayesian methods
Classification: Support vector machines
Classification: More SVMs, perceptron
Holiday
Kernel methods: classification
Kernel methods: regression
Exam 1: 7:30 - 9:30 PM
Graphical models
Graphical models: message passing
Graphical models: sampling
Graphical models: parameter estimation
Graphical models: structure learning
Graphical models: temporal
Non-parametric: nearest neighbor, trees
Non-parametric: bagging, boosting
Non-parametric: Bayesian
Holiday
Practicality: feature selection, multi-class
Exam 2: 7:30 - 9:30 PM
Topics: unsupervised learning
Topics: reinforcement learning

Topics:	reinforcement learning
Topics:	deep networks

	-			
9/5	Introduction, Overview, Basics			
Supervised learning				
9/10	Classification 1: Optimization, Loss Function, Regularization			
9/12	Classification 2: SVMs & Kernels, Bayes Classifier, ROC, Logistic Regress			
9/17	Classification 3: Naive Bayes, Generalization			
9/19	Classification 4: VC Dimension			
9/24	Regression 1: Linear / Polynomial Regression, Kernel, Predictive Distrib			
9/26	Regression 2: Bayesian, Shrinkage, Regularization and SGD			
10/1	Neural networks (feed-forward): Theory, Representation Theorem			
10/3	Neural networks: Optimization			
10/8	Neural networks: Structured prediction, Language Modeling Word2vec			
10/10	Neural networks: Robustness to Dataset Shift			
10/15	Holiday			
Unsupervised learning				
10/17	Dimensionality Reduction: PCA practice			
10/22	Exam 1 7:30 - 9:30 PM			
10/24	Dimensionality Reduction: PCA theory, NMF, t-SNE			
10/29	Matrix Estimation			
10/31	Clustering: mixture model, K-means			
11/5	Topic models			
11/7	Variational Learning			
11/12	Deep Generative Models			
Probabilistic modeling				
11/14	Sampling, MCMC, Gibbs			
11/19	Gaussian processes, Using prior knowledge about world			
Decision making				
11/21	Acting under Uncertainty, Model Predictive Control			
11/26	Markov Decision Processes			
11/28	Holiday			
12/3	Reinforcement Learning, Bandit			
12/5	AlphaGoZero and/or Liberatus			
12/10	Project Presentation			

Semester at a glance

Sep 7	Introduction
Sep 12	Supervised learning, formulation, ERM
Sep 14	Regularization, optimization
Sep 19	Linear vs nonlinear, bias v/s variance
Sep 21	PAC intro, finite hypothesis class, infinite hypothesis, VC
Sep 26	On-line learning, regret
Sep 28	Decision problems, bandits
Oct 3	Neural/deep architectures (supervised)
Oct 5	Robustness, stability, adversarial predictions
Oct 12	Uncertainty, conformal prediction
Oct 17	Complexity, generalization
Oct 19	Oct 19: Quiz #1 (in class)
Oct 24	Unsupervised learning, dimensionality reduction
Oct 26	Generative models, auto-regressive
Oct 31	Deep generative models, VAEs, GANs
Nov 2	Flows, Diffusion models
Nov 7	Deep RL, policy gradient, PPO/TRPO
Nov 9	Markov decision problems, Value Based Deep RL, Q-Learning
Nov 14	DQN, Practical Considerations in RL
Nov 16	Covariate shift, domain adaptation
Nov 21	Few-Shot Learning, transfer learning, in-context learning
Nov 28	Self-supervised learning, masking, contrastive
Nov 30	Foundation models
Dec 5	State-of-the-art LLMs (guest lecture?)
Dec 7	Dec 7: Quiz #2 (in class)

Dec 12 Deep RL/AI applications

how it works

(method)

why it works (theory)

Outline for Today

- Supervised Learning
 - Formal setup
 - Terminology
- Bayes classifier
- Bayes classifier optimality
- Nearest-Neighbor classifier
- Bayes vs. Nearest Neighbor
- Empirical Risk Minimization (ERM)
 - Formal setup
 - Overfitting pitfall
 - Inductive bias
 - Decomposition

References

<u>Understanding Machine Learning:</u> <u>From Theory to Algorithms,</u> Shalev-Shwartz and Ben-David; Cambridge University Press, 2014.

- Slides edited from: Suvrit Sra
- Devroye, Györfi, Lugosi.
 Probabilistic Theory of Pattern Recognition. Springer 1996. Chapter 2 for Bayes, Chapter 5 for Nearest neighbor
- Chen, Shah (2018).
 Explaining the Success of Nearest Neighbor Methods in Prediction.
- Double descent talk: <u>https://</u> <u>www.youtube.com/watch?</u> <u>v=JS-Bl36aVPs</u>

Supervised Learning

 We can easily illustrate the task by providing a diverse set of examples, exercising the underlying relation between images and categories

millions of images

...

Classification - Terminology

- **Data domain**: An arbitrary set \mathcal{X} . Often just $\mathcal{X} = \mathbb{R}^d$ (assuming that the members of \mathcal{X} are represented via feature vectors; some authors write $\Phi(x)$ to emphasize this)
- ▶ Label domain: A discrete set \mathcal{Y} ; e.g., $\{0, 1\}$ or $\{-1, 1\}$.
- ► **Training data**: A finite collection $S = \{(x_1, y_1), \dots, (x_N, y_N)\}$ of pairs drawn from $X \times Y$
- ► Classifier: A prediction rule h : X → Y (we'll write h_S to emphasize dependence of h on the training data). We call h a hypothesis, prediction rule, or classifier.

Classification - Terminology

- Data domain: An arbitrary set X. Often just X = R^d (assuming that the members of X are represented via feature vectors; some authors write Φ(x) to emphasize this)
- ▶ Label domain: A discrete set \mathcal{Y} ; e.g., $\{0, 1\}$ or $\{-1, 1\}$.
- ► **Training data**: A finite collection $S = \{(x_1, y_1), \dots, (x_N, y_N)\}$ of pairs drawn from $X \times Y$
- ► Classifier: A prediction rule h : X → Y (we'll write h_S to emphasize dependence of h on the training data). We call h a hypothesis, prediction rule, or classifier.

What about Regression?

Most of today's discussion focuses on classification; but the generalization to regression is straightforwardly.

Classification - An assumption

▶ Data distribution: Joint distribution \mathbb{P} on $\mathcal{X} \times \mathcal{Y}$. **Important assumption**: \mathbb{P} is fixed but unknown. We will write (X, Y) to denote a random variable with X taking values in \mathcal{X} and Y taking values in \mathcal{Y} .

Think about when and how the above assumption can be violated, and what might we want to do to handle those situations

- If \mathbb{P} is not fixed...
- If $\mathbb P$ is known...

Classification - Measuring Success

► **Measuring success**: Error of classifier aka risk aka generalization error:

$$L(h) \equiv L_{\mathbb{P}}(h) := \mathbb{P}(h(X) \neq Y)$$

i.e., the error of classifier *h* is the probability of randomly choosing a pair $(x, y) \sim \mathbb{P}$ for which $h(x) \neq y$

Goal: Minimize the risk / misclassification error

Question: Which classifier does the "best" job?

Bayes Classifier

▶ Class conditional distribution: Let $\mathcal{Y} = \{0, 1\}$. We define

$$\eta(x) := \mathbb{P}(Y = 1 \mid X = x) = \mathbb{E}[Y \mid X = x].$$

Theorem (BC optimality). For any classifier $h : \mathbb{R}^d \to \{0, 1\}$, $\mathbb{P}(h^*(X) \neq Y) \leq \mathbb{P}(h(X) \neq Y)$, i.e., h^* is an optimal classifier.

Bayes Classifier Optimality

Hint: Consider $\mathbb{P}(h(X) \neq Y \mid X = x) - \mathbb{P}(h^*(X) \neq Y \mid X = x)$ = $\eta(x) (\llbracket h^*(x) = 1 \rrbracket - \llbracket h(x) = 1 \rrbracket) + (1 - \eta(x)) (\llbracket h^*(x) = 0 \rrbracket - \llbracket h(x) = 0 \rrbracket)$ = $(2\eta(x) - 1) (\llbracket h^*(x) = 1 \rrbracket - \llbracket h(x) = 1 \rrbracket)$

Proof. Given X = x, the conditional error probability of any classifier h may be written as:

$$\begin{split} \mathbb{P}\left(h(X) \neq Y | X = x\right) &= 1 - \mathbb{P}\left(Y = h(X) | X = x\right) \\ &= 1 - \left(\mathbb{P}\left(Y = 1, h(X) = 1 | X = x\right) + \mathbb{P}\left(Y = 0, h(X) = 0 | X = x\right)\right) \\ &= 1 - \left(\llbracket h(x) = 1 \rrbracket \mathbb{P}\left(Y = 1 | X = x\right) + \llbracket h(x) = 0 \rrbracket \mathbb{P}\left(Y = 0 | X = x\right)\right) \\ &= 1 - \left(\llbracket h(x) = 1 \rrbracket \eta(x) + \llbracket h(x) = 0 \rrbracket (1 - \eta(x))\right) \end{split}$$

where $\llbracket \cdot \rrbracket$ is the Iverson bracket, i.e. $\llbracket z \rrbracket = 1$ if z ='true' and 0 if z ='false'. Thus, for every $x \in \mathbb{R}^d$, we have:

$$\mathbb{P}(h(X) \neq Y | X = x) - \mathbb{P}(h^*(X) \neq Y | X = x)$$

= $\eta(x) \left([h^*(x) = 1] - [h(x) = 1] \right) + (1 - \eta(x)) \left([h^*(x) = 0] - [h(x) = 0] \right).$

Since $\llbracket h^*(x) = 0 \rrbracket = 1 - \llbracket h^*(x) = 1 \rrbracket$, the above equals to $(2\eta(x) - 1) (\llbracket h^*(x) = 1 \rrbracket - \llbracket h(x) = 1 \rrbracket)$ which is non-negative based on the definition of $h^* (\eta(x) > 1/2 \Leftrightarrow \llbracket h^*(x) = 1 \rrbracket = 1)$. Thus we have

$$\int \mathbb{P}(h(X) \neq Y | X = x) d\mathbb{P}(x) \ge \int \mathbb{P}(h^*(X) \neq Y | X = x) d\mathbb{P}(x).$$

or equivalently, $\mathbb{P}(h(X) \neq Y) \geq \mathbb{P}(h^*(X) \neq Y)$.

Bayes Classifier: some thoughts

Exercise: Verify the following useful formulae

$$L^* = \inf_{h:\mathbb{R}^d \to \{0,1\}} \mathbb{P}(h(X) \neq Y)$$
$$= \mathbb{E}[\min \left\{\eta(X), 1 - \eta(X)\right\}]$$
$$= \frac{1}{2} - \frac{1}{2}\mathbb{E}[|2\eta(X) - 1|].$$

(*Hint:* Use notation from above proof) We call *L*^{*} the Bayes Error (the minimum error possible any classifier; this is an idealized quantity)

Question: Why is this "idealized?"

Bayes Classifier
Class conditional distribution: Let
$$\mathcal{Y} = \{0, 1\}$$
. We define
 $\eta(x) := \mathbb{P}(Y = 1 \mid X = x) = \mathbb{E}[Y \mid X = x].$
Bayes Classifier
 $h^*(x) := \begin{cases} 1, & \text{if } \eta(x) = \mathbb{P}(Y = 1 \mid X = x) > \frac{1}{2}, \\ 0, & \text{otherwise.} \end{cases}$

More practical approach?

Nearest Neighbor Classifier

Training: None (or rather: memorize the data!)

Testing: for each test data point 'x' do: find the 'k' points in training data nearest to 'x' predict label 'y' for 'x' by taking (possibly weighted) majority label of the 'k' points from above

What would the k = 9 case look like?

Nearest Neighbor Classification

k-NN can learn complex nonlinear classifiers

Image: Elements of Statistical Learning Theory

1-nearest-neighbor vs. Bayes

Asymptotically, it can be shown that the error of the 1-nearest-neighbor classifier is

 $L_{NN} = \mathbb{E}[2\eta(X)(1-\eta(X))].$

Theorem. $L_{NN} \leq 2L^*$ (where L^* is Bayes error)

Proof. Given X = x, let X'(n) the closest data point to x amongst given n observations. Then due to $\mathcal{X} \subset \mathbb{R}^d$ (i.e. complete, separable metric space), it can be argued that $X'(n) \to x$ as $n \to \infty$ with probability 1. Further, η is continuous. Therefore, $\eta(X'(n)) \to \eta(x)$ as $n \to \infty$ with probability 1. Let Y'(n) be the label observed associated X'(n). Then,

$$\begin{split} \mathbb{P}(h_{1\text{-NN}}(x) \neq Y | X = x) &= \mathbb{P}(Y'(n) \neq Y | X = x) \\ &= \mathbb{P}(Y'(n) = 1, Y = 0 | X = x) + \mathbb{P}(Y'(n) = 0, Y = 1 | X = x) \\ &\stackrel{(a)}{=} \mathbb{P}(Y'(n) = 1 | X = x) \mathbb{P}(Y = 0 | X = x) + \mathbb{P}(Y'(n) = 0 | X = x) \mathbb{P}(Y = 1 | X = x) \\ &= \eta(X'(n))(1 - \eta(x)) + (1 - \eta(X'(n))\eta(x) \\ &\to 2\eta(x)(1 - \eta(x)) \\ &\stackrel{(b)}{=} 2\min\{\eta(x), 1 - \eta(x)\} \max\{\eta(x), 1 - \eta(x)\} \\ &\stackrel{(c)}{\leq} 2\min\{\eta(x), 1 - \eta(x)\}. \end{split}$$

In above, (a) follows from the fact that Y'(n) and Y are generated independently per our generative model; (b) from that the fact for $\alpha, \beta \in \mathbb{R}$ we have $\alpha\beta = \min\{\alpha, \beta\} \max\{\alpha, \beta\}$; and (c) from the fact that $\eta(x) \in [0, 1]$ as it is probability. Then, the claim of theorem follows by recalling that the Bayes risk $L^* = \mathbb{E}[\min\{\eta(X), 1 - \eta(X)\}]$. \Box

Bayes Classifier Class conditional distribution: Let $\mathcal{Y} = \{0, 1\}$. We define $\eta(x) := \mathbb{P}(Y = 1 \mid X = x) = \mathbb{E}[Y \mid X = x].$ Bayes Classifier

$$h^*(x) := \begin{cases} 1, & \text{if } \eta(x) = \mathbb{P}(Y = 1 | X = x) > \frac{1}{2}, \\ 0, & \text{otherwise.} \end{cases}$$

$$\begin{split} L^* &= \inf_{h:\mathbb{R}^d \to \{0,1\}} \quad \mathbb{P}(h(X) \neq Y) \\ &= \mathbb{E}[\min\left\{\eta(X), 1 - \eta(X)\right\}] \end{split}$$

Classification: what would we like?

- Ideally, we want non-asymptotic results, to better understand how many examples (i.e., how large N) do we need to attain a certain error rate
- We may also have some prior knowledge about (X, Y) that we may wish to incorporate
- Noise, robustness, adversarial learning, and other concerns

 All of these can be accommodated; let us look at another more explicit paradigm

Empirical Risk Minimization

What is Empirical Risk Minimization?

Learner does not know $\mathbb{P}(X, Y)$, so true error (Bayes error) is not known to the learner. However,

Training Error: The error that the classifier incurs on the training data

$$L_S(h) := \frac{1}{N} \# \{ i \in [N] \mid h(x_i) \neq y_i \},\$$

aka *empirical risk*

ERM principle: Seek predictor that minimizes L_S(h)
 Pitfall: Overfitting!

► **Measuring success**: Error of classifier aka risk aka generalization error:

$$L(h) \equiv L_{\mathbb{P}}(h) := \mathbb{P}(h(X) \neq Y)$$

Overfitting: Pitfall of ERM

$$S = \{ (x_i, y_i) \mid 1 \le i \le N \}$$
$$h(x) = \begin{cases} y_i, & \text{if } x = x_i \\ 0, & \text{otherwise} \end{cases}$$

x distributed uniformly in the unit square

- * This classifier has 0 empirical risk!
- * As bad as a random guess (error probability on unseen data =1/2)

How to tackle overfitting?

Rather than give up on ERM, we search for settings where it may actually work.

Inductive bias: Apply ERM over a restricted search space.

- Learner chooses a *hypothesis class* H (i.e., set of predictors it is going to optimize over) in advance before having seen any training data
- **2** ERM_{\mathcal{H}} uses ERM to learn $h : \mathcal{X} \to \mathcal{Y}$ by using *S*

Note: Ideally H should be governed by knowledge of data. But even "simple" choices of H can overfit if we are not careful. Of course, overly strong inductive bias can lead to underfitting.

ERM Theory

Question: When does ERM work? In other words, if we minimize $L_S(h)$, what bearing does that have on L(h)?

Goal of learning theory is to study this (and such) question(s).

Informally, if for all $h \in \mathcal{H}$, $L_S(h)$ is a good approximation to L(h), then ERM will also return a good hypothesis

 $L_{\mathbb{P}}(h_S) \leq \min_{h \in \mathcal{H}} L_{\mathbb{P}}(h) + \epsilon$

Explore: When and why might a certain hypothesis class be "better" for learning?

Training Error: The error that the classifier incurs on the training data

$$L_S(h) := rac{1}{N} \# \left\{ i \in [N] \mid h(x_i)
eq y_i
ight\},$$

Error of classifier aka risk aka

$$\equiv L_{\mathbb{P}}(h) := \mathbb{P}(h(X)
eq Y)$$

ERM: bias-complexity decomposition

 $L_{\mathbb{P}}(h_S) = \epsilon_{\mathrm{apx}} + \epsilon_{\mathrm{est}}$

Thus, prob of error on random (unseen) data, decomposes into

$$\epsilon_{apx} := \min_{h \in \mathcal{H}} L_{\mathbb{P}}(h) \text{ (APPROX ERROR)}$$

 $\epsilon_{est} := L_{\mathbb{P}}(h_S) - \epsilon_{apx} \text{ (ESTIMATION ERROR)}$

- Approximation error also referred to as structural error (bias)
- Estimation error also referred to as variance

Informally, if for all $h \in \mathcal{H}$, $L_S(h)$ is a good approximation to L(h), then ERM will also return a good hypothesis $L_{\mathbb{P}}(h_S) \leq \min_{h \in \mathcal{H}} L_{\mathbb{P}}(h) + \epsilon$

|'|iT

ERM: bias-complexity decomposition

- Approx error: Min risk achievable by a predictor in *H*. Measures how much risk due to inductive bias (observe, does not depend on *N* or *S*)
- Estimation error: Difference between approx error and error achieved by the ERM predictor (on test data). This error arises because training error (empirical risk) is just a proxy for the true risk.

$$\epsilon_{apx} := \min_{h \in \mathcal{H}} L_{\mathbb{P}}(h) \text{ (APPROX ERROR)}$$

 $\epsilon_{est} := L_{\mathbb{P}}(h_S) - \epsilon_{apx} \text{ (ESTIMATION ERROR)}$

Quality of estimation depends on training set size N and on the "richness / complexity" of the hypothesis class (e.g., for a finite hypothesis class, estimation error increases as log |H| and decreases with N).

Classical training vs test curve

ERM: Bias-Complexity Tradeoff

"Modern" viewpoint on generalization: the double-descent curve

Reconciling modern machine-learning practice and the classical bias-variance trade-off

Mikhail Belkin^{a,b,1}, Daniel Hsu^c, Siyuan Ma^a, and Soumik Mandal^a