
6.7900 Fall 2024: Lecture Notes 09

1 Online Learning

In previous lectures, we assume the following.

a. All the training data points come at once (offline learning).

b. Each data point is sampled i.i.d. from a fixed distribution P .

c. After obtaining a well-trained ML model, we apply it to a test set where each data point also
comes from the same distribution P .

In this lecture, we are going to make statistical assumptions as few as possible. We will focus
on the situation where data comes sequentially one at a time. In each round, we have to make an
irrevocable prediction (and incur a loss). The correct answer is revealed after each prediction and
we can learn from these answers to improve our predictions. Basically, we are relaxing the three
assumptions in the standard offline learning setting.

a. Each data point comes in a stream.

b. The data stream is governed by an arbitrary underlying process that we may not know — the
nature may even act adversarially to make things unfavorable for us.

c. Each new data point is both a test case when we make a prediction and a training case after
the loss is revealed.

Examples of such a sequential decision-making paradigm can be ubiquitous in real life:

1. Clinical trials. We decide which drug should be used each time after sequential observations.

2. Online advertising. We adjust advertisements each time after observing click-through rates.

3. Investment. We re-balance the portfolio each single day after we see price changes.

1

MIT 6.7900 Fall 2024 2

2 Online Prediction Game

In each round t,

• Nature reveals input x

• Learner makes a prediction on x

• Nature reveals the correct output

• Learner suffers loss

• Learner updates its model

Note again that we do not make any statistical assumptions about the sequence of inputs/labels
— the nature may have access to the algorithm and choose labels adversarially. The problem is
then how we should evaluate the performance of an algorithm.

Definition: We define the regret of an algorithm as the difference between the algorithm’s
performance relative to some benchmark class of methods.

We hope that regret can be growing as a sublinear (o(T)) term such that on average the regret
goes down to 0 as T grows. Clearly, we have to be careful about both the benchmark as well as the
nature. For example, assume we need to predict a label, and the nature is allowed to always choose
the label to be the opposite of what we predict in each round. The learner would then suffer Ω(T)
cumulative loss if we compare with the best algorithm with no restrictions.

2.1 Logistic model as an example

In each round t, Learner has a parameter θt ∈ B ⊆ Rd.

• Nature reveals input xt

• Learner makes a prediction using P (y = 1|xt, θt) = σ(θt⊤xt)

• Nature reveals the correct label yt ∈ {0, 1}

• Learner suffers loss L(xt, yt, θt) = − log P (yt|xt, θt)

• Learner updates the parameter θt+1 for the next round

Learner’s regret after T rounds is

RT =
T∑

t=1
L(xt, yt, θt)︸ ︷︷ ︸

Learner’s cumulative loss

− min
θ∈B

T∑
t=1

L(xt, yt, θ)︸ ︷︷ ︸
cumulative loss of the best fixed predictor

.

MIT 6.7900 Fall 2024 3

2.2 A warm-up exercise

Consider a restricted online classification task where we know at the beginning that a good solution
must exist.

a. ∥x(i)∥ ≤ R, y(i) ∈ {1, −1} for all i.

b. All data points are linearly separated by a positive margin

y(i) θ∗⊤x(i)

∥θ∗∥
≥ γ.

In this case, the best linear predictor incurs a loss of 0. Note that the ratio R/γ characterizes the
difficulty of the problem. A simple Perception algorithm (see Figure 1) dating back to 1950’s solves
the problem.

Figure 1: Perception

Theorem: Perception makes at most R2/γ2 mistakes and as a result incurs a bounded regret
that does not depend on the dimension d.

The gradient update in LR also has a similar form of the update in Perception. Q: What is the
intuition that Perception works with large step-sizes? In fact, as t grows, ∥θt∥ also grows, which
makes the update ytxt create smaller changes towards the decision boundary.

3 Online Convex Optimization

The logistic model and the warm-up exercise described above is a special case of online convex
optimization. Let B be a set of parameters. For t = 1, 2, · · ·

MIT 6.7900 Fall 2024 4

• Learner selects θt ∈ B

• Nature reveals a convex loss function ft(·)

• Learner incurs loss ft(θt)

Learner’s goal is to minimize regret

RT =
T∑

t=1
ft(θt) − min

θ∈B

T∑
t=1

ft(θ).

We make the following assumptions.

a. (Convex, Bounded) B is convex. ∥B∥ ≤ R.

b. (L-Lipschitz) |ft(θ) − ft(θ′)| ≤ L∥θ − θ′∥ for any θ, θ′ ∈ B.

3.1 Follow the leader

A naive approach is to do Empirical Risk Minimization (ERM) in each time:

θt = arg min
θ∈B

t−1∑
s=1

fs(θ).

However, this may not work as opposed to the standard i.i.d. setting.

Example: Let θ ∈ [−1, 1], θ1 = 0. Nature’s choices are: f1(θ) = 0.5θ and thereafter for even
t, ft(θ) = −θ, and for odd t, ft(θ) = θ. Learner’s losses (following ERM) become: 0, 1, 1, · · · .
Competitor’s cumulative loss is at most 0.5 (we can always choose θt = 0).

The example above highlights that we need to come up with new methods to alleviate the
situation where the first several wrong decisions lead to very bad outcome.

3.2 Follow the regularized leader

We now discuss a Projected Gradient approach (or follow the regularized leader). Initialize θ1 ∈
B. For t = 1, 2, · · ·

• Nature reveals a convex loss function ft(·)

• Learner incurs loss ft(θt)

• Learner updates the parameter according to projected gradient descent:

θ̂t = θt − ηt∇θft(θ)|θ=θt

θt+1 = arg min
θ

∥θ − θ̂t∥

MIT 6.7900 Fall 2024 5

Theorem: Under the assumption that (a) B is convex, (b) ft(·) is L-Lipschitz for all t, and (c)
T is known, Projected Gradient with ηt = R/L

√
T yields a regret bound of RL

√
T .

Proof. In class we mentioned the proof idea for the case without projection. Here we show a more
formal proof. For simplicity we write ∇ft(θt) instead of ∇θft(θ)|θ=θt . We decompose the regret as:

RT =
T∑

t=1
ft(θt) − ft(θ∗)

≤
T∑

t=1
ft(θt) −

(
(θ∗ − θt)⊤∇ft(θt) + ft(θt)

)

=
T∑

t=1
(θt − θ∗)⊤∇ft(θt)

=
T∑

t=1
(θt − θ∗)⊤ θt − θ̂t+1

η

=
T∑

t=1
(θt − θ∗)⊤ (θt − θ∗) − (θ̂t+1 − θ∗)

η
. (1)

Meanwhile, we have

−(θt − θ∗)(θ̂t+1 − θ∗) = 1
2

(
∥θt − θ̂t+1∥2 − ∥θt − θ∗∥2 − ∥θ̂t+1 − θ∗∥2

)
= 1

2
(
∥η∇ft(θt)∥2 − ∥θt − θ∗∥2 − ∥θ̂t+1 − θ∗∥2

)
≤ η2L2

2 − ∥θt − θ∗∥2 + ∥θ̂t+1 − θ∗∥2

2

≤ η2L2

2 − ∥θt − θ∗∥2 + ∥θt+1 − θ∗∥2

2 . (2)

The last inequality holds because ∥θt+1−θ∗∥ ≤ ∥θ̂t+1−θ∗∥. (Why? Try to convince yourself intuitively
based on the fact that B is convex.) Plugging (2) into (1) and setting η = R/L

√
T yield

RT ≤
T∑

t=1

∥θt − θ∗∥2

η
+ ηL2

2 − ∥θt − θ∗∥2 + ∥θt+1 − θ∗∥2

2η

= ∥θ1 − θ∗∥2 − ∥θT +1 − θ∗∥2

2η
+ ηTL2

2

≤ R2

2η
+ ηTL2

2 = RL
√

T .

Exercise: What if we do not know T? Can you show that setting ηt = R/L
√

t also leads to a
regret bound of C · RL

√
T (C is an absolute constant)?

	Online Learning
	Online Prediction Game
	Logistic model as an example
	A warm-up exercise

	Online Convex Optimization
	Follow the leader
	Follow the regularized leader

