
6.7900 Fall 2024: Lecture Notes 5

1 Recap

Proposition: Consider regression with X = RD, Y = R and square loss
L(a, g) = (a − g)2, then decision rule minimizes risk of a new point h(x) =
E[Y |X = x].

We are not aware of future data points, but by assuming past data and future
data are iid, we can take use of training data. A maximum likelihood approach
would model

p(y|x, θ, σ2) = N (y|θT x, σ2)

We can also just minimize empirical risk over all decision rules, but this does not
generalize well. Thus, we limit the decision rules to only linear predictors h(x) =
θT x.

In both of the above cases, we get

θ̂ = arg min
θ

(Xθ − Y )T ((Xθ − Y ))

and we derived the close form solution when N > D and X is full rank.

2 Problems of Linear Regression

Visualizing the full-rank case See slides for figures of visualization. We see that
in the given example, the RSS objective is strictly convex in the 1 dimensional case
and converges to a single global minimum. However, it could be that the RSS
(residual sum of squares, see lecture 4) objective is not strictly convex and there are
multiple minima.

What could go wrong? Consider the case where two or more features are per-
fectly collinear. There isn’t a unique best hyperplane; in fact, there are infinitely
many optimal solutions. In this situation, X is no longer full rank.
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Exercise: What happens if y has noise in it? Does that change the situation?

Assume that we have a tiny and meaningless noise in x. Now there exists a
unique hyperplane, but the unique solution is meaningless. See slides for a visual-
ization of this scenario. An example could be predicting with both credit card limit
and credit rating as two features, which may be perfectly or imperfectly collinear.
Recall the Gaussian example with ”flat” likelihood from lecture 2.

Exercise: Will a more complex model solve this dilemma? What about more
data? What is a correct solution?
Hint: Consider not only the mathematical side of the problem, but also the
practical application of it.

3 Bayes & Multivariate Gaussians

In this section, we will go back to the case where data is just {y(n)}N
n=1 and de-

velop a Bayesian inference for multivariate Gaussians, then apply this idea to linear
regression.

We take a Dy dimensional label y(n) = [y(n)
1 , ..., y

(n)
Dy

]T , and suppose that we posit

a Gaussian likelihood y(n) ∼ N (µ, Σ) with µ ∈ RDy and Σ positive definite.

Observation: We have a special case when Σ = σ2IDy×Dy . This is called a
”normal means model”. We can get strictly lower risk by estimating parame-
ters jointly in a Bayes-inspired procedure rather than by using separate MLEs
(Stein’s phenomenon).

We treat Σ as fixed to avoid overload of notations:

p(y(n)|µ) = 1√
(2π)Dy |Σ|

e−0.5(y(n)−µ)T Σ−1(y(n)−µ)

The likelihood can be expressed as

p(y(n)|µ) ∝µ e−0.5(y(n)−µ)T Σ−1(y(n)−µ)

We have the conjugate prior

p(µ) = N (µ|µ0, Σ0)

In practice, the hyperparameters can be chosen based on domain information.
For example, if I want to know the PM2.5 value at a sensor, I can take the NYC’s
reported value of 0 to 117 µgm−3.
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The posterior for one data point can be written as

p(µ|y(1)) ∝µ p(y(1)|µ)p(µ|µ0, Σ0)

p(µ|y(1)) ∝µ e−0.5(y(1)−µ)T Σ−1(y(1))−µ

p(µ|y(1)) = N (µ|µ1, Σ1) ∝µ e−0.5(µ−µ1)T Σ−1
1 (µ−µ1)

We would like to solve for the mean and variance of the posterior. So for any µ,
we have

µT Σ−1
1 µ = µT Σ−1µ + µT Σ−1

0 µ

Σ−1
1 = Σ−1 + Σ−1

0

Σ1 = (Σ−1 + Σ−1
0 )−1

We are allowed to take the inverse here because sum of positive definite matrices
is also positive definite. For future reference, note that the inverse of a covariance
matrix is called the precision matrix. We also have

µT
1 Σ−1

1 µ = (y(1))T Σ−1µ + µT
0 Σ−1

0 µ

Σ−1
1 µ1 = Σ−1y(1) + Σ−1

0 µ0

µ1 = Σ1(Σ−1y(1) + Σ−1
0 µ0)

Multiple data points We have:

• Likelihood: p(y(m)|µ) = N (y(n)|µ, Σ)

• Conjugate prior: p(µ) = N (µ|µ0, Σ0)

• Posterior for one datapoint: Σ1, µ1

We start by solving the posterior for two datapoints p(µ|{y(n)}2
n=1) = N (µ|µ2, Σ2)

Σ−1
2 = Σ−1 + Σ−1

1 = 2Σ−1 + Σ−1
0

Σ−1
2 µ2 = Σ−1y(2) + Σ−1

1 µ1 = Σ−1
2∑

n=1
y(n) + Σ−1

0 µ0

Recursively, we can obtain the posterior for N data points p(µ|{y(n)}N
n=1) = N (µ|µN , ΣN )

Σ−1
N = NΣ−1 + Σ−1

0

Σ−1
N µN = Σ−1

N∑
n=1

y(n) + Σ−1
0 µ0
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Let’s perform a sanity check on the above results under the one label case where
Dy = 1. We get

σ2
N = 1

N
σ2 + 1

σ2
0

µN = 1
N
σ2 + 1

σ2
0

( 1
σ2

N∑
n=1

y(n) + 1
σ2 µ0)

Exercise: Check what happens when N = 0. What happens if N → ∞?

4 Bayesian Linear Regression

Let’s look back to linear regression with Bayesian likelihood N (y(n)|θT x(n), σ2) with
the assumption that σ is known. We implicitly condition on x for all expressions
below:

p(y(1)|θ) ∝θ e− 1
2σ2 (y(1)−θT x(1))2

Our conjugate prior is p(θ) = N (θ|µ0, Σ0), and our posterior p(θ|y(1)) = N (θ|µ1, Σ1).
Following a similar procedure from above, we get

Σ−1
1 = Σ−1

0 + (σ2)−1x(−1)(x(1))T

Σ−1
1 µ1 = Σ−1

0 µ0 + (σ2)−1x(1)y(1)

Exercise: Check the above result for Σ−1
1 .

Recursively, we can get the result for N data points:

Σ−1
N = Σ−1

0 + (σ2)−1
N∑

n=1
x(n)(x(n))T = Σ−1

0 + (σ2)−1XT X

Σ−1
N µN = Σ−1

0 µ0 + (σ2)−1XT Y
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