
6.7900 Fall 2024: Lecture Notes 2

1 Empirical Risk Minimization

Recap: In the last class, we encountered the challenge that in most real-world
scenarios we do not know the distribution of future data (X,Y ). We hypothesized
that we could use our training data to select the best h. However, in order to use the
training data to estimate the best hypothesis, we need to make some assumptions
about the relationship between training and future/test data.

The most common assumption made in machine learning is that all data points
(X(n), Y (n)) in both training and future data are sampled independently from the
same underlying distribution (I.I.D. samples).

Note: Although predominant in machine learning applications, in almost ev-
ery real-world problem this IID assumption is not true. For example, let’s say
we are predicting life expectancy. The distribution of life expectancy changes
over time, so if one divides training and testing data by time the prediction will
likely be off. However, as long as one is aware (and states) this assumption,
the models we get out are typically still useful in real-world domains.

Empirical Distribution: p̂(x, y) = 1
N

∑N
n=1 δx(n),y(n)(x, y). δk is a Dirac delta, a

function which is zero at every point except from k and integrates to 1, and therefore
it is used to formalize discrete probabilities over continuous space.

Empirical Risk Minimization: instead of minimizing the risk under the true
future data distribution p, we choose h to minimize the empirical risk (i.e. the
risk under the empirical distribution) over the training data:

Ep[L(Y, h(X))] ≈ Ep̂[L(Y, h(X))] = 1
N

N∑
n=1

L(y(n), h(x(n)))

Why might this be a good approximation? Thanks to the law of large numbers,
as we get more and more data (formally, in the limit of N → ∞) the empirical risk
approaches the true risk.

1



MIT 6.7900 Fall 2024 2

Law of Large Numbers: Let Z1, Z2, ... be IID random variables. Assume all neces-
sary expectations exist. Then, with probability 1: See probability

classes/textbooks for
the difference between
surely or always and
with probability 1 or al-
most surely.

See probability
classes/textbooks for
the difference between
surely or always and
with probability 1 or al-
most surely.

lim
N→∞

1
N

N∑
n=1

Zn = E[Z1]

However empirical risk minimization does not come without a new set of chal-
lenges as highlighted by the following example.

Example (overfitting): Take the spam detection example (label: 1 spam or 0 not-
spam), 0-1 loss, and the following decision rule: h(x) = 1 if the timestamp of x
matches the timestamp (assumed to be unique) of any spam email in the training
set exactly, else 0.

By construction this decision rule will classify as spam all the spam emails in the
training set and as not spam all the other emails, therefore the empirical risk of this
decision rule on the training set is zero. Therefore, this will always be a decision
rule minimizing the empirical risk. But is this a good decision rule? Given that it
will classify as non-spam any email arriving in the future, this decision rule is clearly
not useful. This leads us to refine, in general terms, our goal to that of generalization
and to notice the phenomenon of overfitting, common failure mode of empirical risk
minimization.

Generalization: we want rules to perform well on new data points that often
are different from those in the training set.
Overfitting: good performance on training data but poor generalization.

How do we fix this problem? Two common solutions: either restrict the set of
possible h or appproximate the distribution of (X,Y ) differently. We will start with
the second strategy, often referred to as modeling, and the technique of maximum
likelihood estimation.

2 Maximum Likelihood Estimation

Modeling: We want to approximate the distribution of the data. For simplicity for
the moment, we will consider data with no features, but analogous arguments will
also apply once we reintroduce the features X.

Let’s assume y(n) are i.i.d. draws from a distribution indexed by a parameter
θ ∈ Θ. p(y|θ) is the density or pmf, but when looked as a function of θ, it is often If the parameter is

finite-dimensional we
call it a parametric
model

If the parameter is
finite-dimensional we
call it a parametric
model

called the likelihood.
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Maximum Likelihood Estimation (MLE): we approximate the distribution as
p(y|θ̂) where θ̂ is chosen to maximize the likelihood of the training data.

Example (Bernoulli): y(n) ∈ {0, 1} is iid sampled from some Bernoulli(θ) distri-
bution with θ ∈ [0, 1]. What is the MLE estimate θ̂?

Because we assumed these points are independent (conditionally independent
when working with some features X):

p(D|θ) =
N∏
n=1

p(y(n)|θ) =
N∏
n=1

θy
(n)(1− θ)1−y(n)

Finding the maximum of the likelihood is equivalent to finding the maximum of the
log-likelihood as the logarithm is a monotonically increasing function, moreover
working in log-space often makes calculations much easier transforming products
in sums, therefore we often prefer working with log-likelihoods. This is also true
when solving problems computationally where likelihood values become so small
that they often vanish with the finite precision of floating point representations.
Note that technically taking the log requires us to make sure θ is not 0 or 1, cases
which one would have to do separately. In log space:

log p(D|θ) =
N∑
n=1

[y(n) log θ + (1− y(n)) log(1− θ)]

To find the maximum we show that the second derivative is always non-positive and
therefore the maximum has to be to either one of the two extremes (0 or 1) or at a
value where the first derivative is 0:

d log p(D|θ)
dθ

= θ−1
N∑
n=1

y(n) − (1− θ)−1
N∑
n=1

(1− y(n))

d2 log p(D|θ)
dθ2 = −θ−2

N∑
n=1

y(n) − (1− θ)−2
N∑
n=1

(1− y(n))

All the coefficients and the terms of the sums are non-negative so the second deriva-
tive is always non-positive, setting the first derivative equals to 0, we obtain:

θ̂ = arg max
θ∈[0,1]

log p(D|θ) = N−1
N∑
n=1

y(n)

Exercise: Show that for a normally distributed random variable y(n) ∈
R, y(n) ∼ N (µ, σ2), µ ∈ R, σ2 ∈ R+, the MLE is µ̂ = N−1∑N

n=1 y
(n) =: ȳ

and σ̂2 = N−1∑N
n=1(y(n) − ȳ)2.
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Advantages of MLE:

1. If the likelihood is differentiable w.r.t. the parameters, it is often easy and fast
to use modern gradient-based optimizers and complex models. Although in
theory these may get stuck in local minima, this scheme is at the heart of many
successful uses of ML in practice.

2. MLE is invariant to reparameterization using a bijective function η = f(θ) (as
an example using σ2 instead of σ as parameter).

Proof: Assuming the MLE is unique:

∀θ 6= θ̂, p(D|θ̂) > p(D|θ)
∀θ 6= θ̂, p(D|f−1(f(θ̂))) > p(D|f−1(f(θ)))
∀η 6= f(θ̂), p̃(D|f(θ̂)) > p̃(D|η) =⇒ η̂ = f(θ̂)

where the last line follows from a change in parameter which, unlike changes
in random variables, does not require a Jacobian term.

Issues with MLE:

1. Lack of uncertainty: the output of the MLE does not provide any information
on the uncertainty involved in the determination of the estimator itself.

Example: Modeling a set of datapoints with a normal N(µ, 1002) where the
mean µ is a parameter. If we have one datapoint y(1) = 0.5, the likelihood
curve will be very flat as there is little evidence for precise values within one
standard deviation of the data. On the other hand, if we have one million data
points with a mean of 0.5, the likelihood curve will be steep around µ = 0.5 as
values different from it have significantly lower likelihood under the observed
data. However, in both cases, the resulting model coming out of the MLE is
that the data has a distribution of N (y|µ̂ = 0.5, 1002).

2. Poor generalization with little data: when the number of data points is small
(compared to the number of parameters) the MLE often does not generalize
very well.

Example: y(n) ∈ {0, 1} is iid sampled from some Bernoulli(θ) distribution with
θ ∈ [0, 1]. We have seen that: θ̂ = arg maxθ∈[0,1] log p(D|θ) = N−1∑N

n=1 y
(n).

If we have a small amount of data and have not seen any 1’s yet, our MLE will
put zero likelihood into any 1’s coming in the future. A prediction that seems
unlikely to generalize well.
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3. Arbitrary likelihood edge cases: for many models, especially in continuous
space, one may be able to obtain arbitrarily large likelihood with extreme
parameter settings that overfit specific training data points.

Example: We have a mixture of two Gaussians with fixed proportions πk ∈
(0, 1), y(n) ∈ R, p(y|µ1, µ2, σ

2
1, σ

2
2) =

∑2
k=1 πk

1√
2πσ2

k

exp
(
− (y−µk)2

2σ2
k

)
. We will

construct a parameter setting with arbitrarily large likelihood, which, by defi-
nition, will be among the MLE. Set µ∗1 = y(1), then

p(y(1)|µ∗1, µ2, σ
2
1, σ

2
2) ≥ π1

1√
2πσ2

1

and

p(D|µ∗1, µ2, σ
2
1, σ

2
2) ≥

π1
1√

2πσ2
1

 N∏
n=2

π2
1√

2πσ2
2

exp
(
−(y(n) − µ2)2

2σ2
2

)

where the inequality follows from using the iid assumption, writing likelihoods
with the sum of Gaussian densities and only keeping one of the two Gaussian
for each term (the densities are non-negative). However, now, fixing some
values for µ2 and σ2, we can make the likelihood arbitrarily large by making
σ1 arbitrarily small. This setting will therefore be a MLE but, once again, it
seems unlikely to generalize well.
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