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1 Normalizing Flow Model

Recall that our task is to translate a simple latent distribution z to a complex dis-
tribution x through invertible transformations. In some cases, the dimension of x
could be much larger than z - but for today’s purpose, we will assume their dimen-
sions are equal.

We can approach this problem by introducing a series of invertible layers f1, · · · , fL

so that x = fL ◦ · · · ◦ f1(z). Because all layers are invertible, we can recover z from
x with

z = g1 ◦ · · · ◦ gL(x)

where gi = f−1
i . This is advantageous since recovering z allows us to explicitly

evaluate the log-likelihood of the observed x:

P (x | θ) = N(z(x) | 0, I) dz

dx

= N(z(x) | 0, I)
L∏

j=1

∣∣∣∣∣∂hj−1
∂hj

∣∣∣∣∣
Note that the Jacobian transformation is to take into account that some of the trans-
formations might be “stretching” or “pressing” the space, so it is not sufficient to
only look at probability density

The downside of normalizing flows, of course, is that the transformations have to
invertible; a simple linear transformation might not be invertible if unconstrained.

2 Continuous Flows

We can view each transformation of the normalizing flow model as one time step.
A natural extension is to turn this into continuous time. Assume t = 0 is the simple
distribution p0(x), and t = 1 is the complex distribution p1(x). We are going to learn
a time dependent vector field vt(x) (with same dimension as dx) to specify how the
distribution should move in time. With a continuous model, we can actually give an
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“intermediate” distribution between the latent and complex distributions with the
continuity equation:

d

dt
pt(x) = −∇x · (pt(x)vt(x)).

There are several approaches one might attempt. First, we could have specified
time-dependent probability flow pt(x). The challenge is the vector field will be very
challenging to compute. Another attempt is to start by specifying a vector field; but
finding a vector field that gives p1(x) is very challenging. The approach we take is
to specify a simple trajectory interpolating between p0(x) and p1(x) and use it as a
guidance to train the vector field.

As one simple but important special case, assume for now that p1 is a point mass
(only one sample), and we move in a straight line from p0 to the target sample.
Then if we are at pt at time t, we have

d

dt
xt = x1 − xt

1 − t

as the time-dependent vector field because we need to move to xt in 1−t time. Note
that in this case, we can explicitly write the distribution at time t:

pt(x) ∼ N(x | tx1, (1 − t)2I).

Exercise: Show the continuity equation holds in this case.

Going back to the general case, given t and xt, there are multiple pairs of (x0, x1)
whose linear interpolation at time t would result in xt: each of them suggests going
in a different direction - the vector field we want is simply the conditional expecta-
tion of these directions, i.e.,

d

dt
xt = Ex1

(
x1 − xt

1 − t
| xt, t

)
.

We train this as follows.

1. Sample x0 ∼ N(0, I).

2. Sample x1 ∼ q(x1).

3. Sample t ∼ U(0, 1).

4. Compute xt = (1 − t)x0 + tx1.

5. Take a gradient step to minimize
∣∣∣∣∣∣x1−xt

1−t − vθ(xt, t)
∣∣∣∣∣∣2.
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To show why taking the conditional expectation gives us a vector field that trans-
ports p0(x) to p1(x), we propose the following evolution of probability distribution:

pt(x) =
∫

pt(x | x1)q(x1)dx1.

We can check that plugging t = 0 and t = 1 gives the correct distribution (p0 and
p1). Thus, it remains to show that this satisfies the continuity equation with respect
to the conditional expectation vector field.

Integrating both sides over x1 with respect to q(x) on the continuity equation
gives ∫

q(x1) d

dt
pt(x | x1)dx1 = −

∫
q(x1)∇x · (pt(x | x1)v(x | t, x1))dx1.

Rearranging gives

d

dt
pt(x) = −∇x ·

(
pt(x)

∫
q(x1)pt(x | x1)

pt(x) v(x | t, x1)dx1

)
.

Now, q(x1)pt(x|x1)
pt(x) is the conditional probability of x1 given we are at x at time t, so∫ q(x1)pt(x|x1)

pt(x) v(x | t, x1) is simply the conditional expectation of the simple vector
fields for each data point.

To recap, we constructed a simple vector field if there is only one target sample;
we then proposed to simply averaging the vector fields constructed in this manner
for all target samples; lastly, we proved this conditional expectation vector field is
the vector field we are looking for.
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