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We are going to talk about one of the most important generative models today — diffusion
models. We will put more emphasis on intuition and insights.

1 Idea and Intuition

The idea of diffusion model is to build complex objects (QD(x)) through simple samples (P (z)) via
hierarchical stacks. Note that ∫

QD(x)Q(z|x, ϕ)dx ≈ P (z)∫
P (z)P (x|z, θ)dz ≈ QD(x)

In VAEs, we hope to jointly learn the encoder Q(z|x, ϕ) and the decoder P (x|z, θ) with P (z) and
QD(x) fixed. In diffusion models, We further fix the encoder Q(z|x) and only learn the decoder
P (x|z, θ). Note that the fixed encoder still need to be carefully chosen (which is the art of diffusion
models) to satisfy the above first approximated equality to ensure consistency.

To be more concrete, the encoder follows a simple fixed structure where noise is added in each
step as a forward process, while the decoder de-noises gradually as a reverse process. When adding
noise, intuitively we are washing out signals first from high frequency then to low frequency. The
de-noising steps uncover those lost signals. Once we have a de-noising model, we can draw a noisy
sample and iterate reversely to generate a new sample. The question essentially lies in how to
de-noise — there can be multiple choices and directions to reverse, and multiple inputs could have
similar noisy forward outputs.

2 Forward Process

Let q(xt|xt−1) follow a Gaussian distribution such that

q(x1:T |x0) = ΠT
t=1N (xt|

√
1 − βtxt−1, βtI).

Through the property of Gaussian, we know that

xt =
√

ᾱtx0 +
√

1 − ᾱtϵ for some ϵ ∼ N (0, I)
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where ᾱt = Πt
s=1(1 − βs). As T → +∞, xT becomes Gaussian. The latent class z of x0 becomes

a trajectory x1:T . Thus, diffusion models are generally over-parameterized models that can overfit
on small datasets but can perform quite well on large (structured) datasets such as images.

3 Reverse Process

We want to further approximate p(x0:T ) as

p(x0:T ) = p(xT )ΠT
t=1p(xt−1|xt)

≈ N (0, I)ΠT
t=1N (xt−1|µθ(xt, t), Σ2

θ(xt, t))

under the assumption that (i) step-size βt is sufficiently small, and (ii) T is large enough such that
p(xT ) ∼ N (0, I). In fact, with the two assumptions, Σ2

θ(xt, t) can be approximated as βtI. It suffices
to learn the de-noising “vector field” µθ(xt, t). In principle, this can be done by maximizing ELBO:

log pθ(x0) ≥ Eq

[
log pθ(x0:T )

q(x1:T |x0)

]
.

Keep in mind that the latent structure is characterized via x1:T
In the following we provide a different perspective of the argument above that may bring im-

proved insights. Note that

q(x1:T |x0) = q(xT |x0)ΠT
t=2q(xt−1|xt, x0).

Since

x0 = 1√
ᾱt

(xt −
√

1 − ᾱtϵ)

and

q(xt−1|xt, x0) = q(xt|xt−1)q(xt−1|x0)
q(xt|x0) which is Gaussian,

we can get

q(xt−1|xt, x0) ∼ N
(

1
√

αt

(
xt − βt√

1 − ᾱt
ϵ

)
,
1 − ᾱt−1
1 − ᾱt

βtI ≈ βtI

)
.

Essentially we should not use x0, but the derivation shows that we can in fact approximate µθ(xt, t)
by predicting the (marginal) noise ϵ as ϵθ(xt, t). Predicting the noise may be better since the noise
is always in the same scale and thus may make the training easier and more stable.

See Slides pp.34 for detailed algorithms for training and sampling.

Continuous diffusion models very shortly covered in class. See Slides pp.35-46 for details.
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