
6.7900 Fall 2024: Lecture Notes 20

1 Auto-regressive Generative Models

Generative models are all the rage now. Examples in natural sciences:

• Generate molecules with desired properties.

• Predict conformation of a protein and a drug

One kind of generative modeling is auto-regressive, where we generate a se-
quence of predictions one step at a time, using previously predicted parts of the
sequence to generate the next part.

A distribution over all sequences of length n can be decomposed as follows:

p(x1, . . . , xn) = p(x1)p(x2|x1)p(x3|x2, x1) . . . P (xn|xn−1 . . . x1)

and therefore, a generative model that auto-regressively predicts the next part of
the sequence at step i would need to sample from:

P (xi|xi−1 . . . x1).

Example: Auto-regressive language modeling might generate a sequence of
text in the following way (model inputs −→ model outputs):

() −→ You sampled from P(·)
You −→ are sampled from P(·| you)
You are −→ taking sampled from P(·| You are)
You are taking −→ this sampled from P(·| you are taking)

We might be interested in first learning and then sampling from P (xi|xi−1 . . . x1).
However, there are two challenges in modeling this distribution as sequences grow
long. First, it is challenging to model distributions with arbitrary length histories.
Second, it is challenging to model distributions with long histories.

A solution to these problems is to make additional modeling assumptions. For
instance, in a bigram model, each part of the sequence only depends on the last
part:

1

MIT 6.7900 Fall 2024 2

p(x1, . . . , xn) = p(x1)p(x2|x1)p(x3|x2) . . . P (xn|xn−1).

Similarly, the decomposition for a trigram model is as follows:

p(x1, . . . , xn) = p(x1)p(x2|x1)p(x3|x2, x1) . . . P (xn|xn−1xn−2).

These assumptions come at a cost to performance. However, neural models are
able to handle much longer histories. For instance, state of the art transformers can
generate sequences of length 100K or more.

2 Two Kinds of Generative Models

The first class of generative models explicitly learns the likelihood function p(x|θ).
Auto-regressive models fall into this class, which as we saw above, explicitly learn
P (xi|xi−1 . . . x1).

In a second class of generative models, p(x|θ) is implicitly learned. For this
class of models, we usually first sample from some known distribution to produce a
latent z, and then learn and transformation or procedure to generate x from z. For
instance, we may learn the transformation p(x|z, θ).

In the next sections, we will explore the second class in more detail.

3 Kernel Density Estimation

Say I have a dataset of one-dimensional samples D = {x(1), x(2), . . . , x(n)}. How can
I use these samples to model the distribution that produced them? I would like to
model this distribution in such a way that I can later sample from it.

One simple idea is to expand each data point into a local density “kernel”. Define
a standard normal kernel to be

K(x) = N(x|0, 1).

A kernel centered at µ with standard deviation h is therefore:

1
h

K(x− µ

h
) = N(x|µ, h2)

If each data point x(i) contributes some density to nearby x values, a kernel that
captures this density for each x(i) is:

1
h

K(x− x(i)

h
).

MIT 6.7900 Fall 2024 3

We can sum these contributions over all data points to get a model of the original
distribution:

P̂ (x|h) = 1
N

N∑
i=1

1
h

K(x− x(i)

h
)

Note: hyper-parameter h controls the “spread” of contribution from each x(i)

to nearby x values.

Exercise: Is this a valid probability distribution?

Exercise: How would we sample from the resulting distribution? (keep read-
ing for answer)

By construction see that our model is the average of several gaussians. To sample
from it, we can sample one of the data points uniformly at random, and then sample
from its gaussian:

z ∼ Cat(z| 1
N

, . . .
1
N

) = P (z)

x ∼ 1
h

K(x− x(z)

h
) = P (x|z).

Therefore, our final distribution takes the form of a “mixture model”:

P̂ (x|h) = 1
N

N∑
i=1

1
h

K(x− x(i)

h
) =

N∑
z=1

p(z)p(x|z).

Such an approach can also apply to high-dimensional data (eg. x(i) is a vector not
scalar). However, as points tend to be “far away” in high dimensions, such a model
tends to perform poorly.

4 Gaussian Mixture Models

We have the same setup as in the previous section, but this time we choose to model
our data with a fixed number of clusters, k, which might be a more reasonable
modeling assumption. Each cluster z will be modeled as a Gaussian distribution:

N(x|µz, Σz)

and has some weight πz in our mixture. Note that
∑k

z=1 πz = 1. Therefore, our
model is

MIT 6.7900 Fall 2024 4

P (x|θ) =
k∑

z=1
πzN(x|µz, Σz).

Exercise: How would we sample from this model?

To sample from this model, we can first think about sampling z ∼ π and then
sampling x from N(x|µz, Σz). Our model therefore has the following interpretation:

P (x|θ) =
k∑

z=1
πzN(x|µz, Σz) =

k∑
z=1

P (z|θ)P (x|z, θ).

Our goal is to find the parameters that maximize the log-likelihood of the data:

max
θ

L(D; θ) = max
θ

N∑
i=1

log P (x(i)|θ) = max
θ

N∑
i=1

log
[k∑

z=1
πzN(x|µz, Σz)

]
.

4.1 Optimize via Gradient Ascent

One simple way to try to find the optimum is by using gradient ascent.

Note: the following derivation and analysis is for a single data point (ie. we
find ∇θ log P (x(i)|θ) which we can then sum over data points to get the gradi-
ent over the dataset).

We start by writing our expression and taking the gradient through the log:

∇θ log P (x|θ) = 1
P (x|θ)∇θP (x|θ).

Next, we apply the law of total probability:

= 1
P (x|θ)∇θ

k∑
z=1

P (x, z|θ) = 1
P (x|θ)

k∑
z=1
∇θP (x, z|θ).

To simplify ∇θP (x, z|θ), we observe that P∇θ log P = ∇θP . Note that this simplifi-
cation is helpful because P (x, z|θ) is the product of two distributions one of which
contains an exponential term.

= 1
P (x|θ)

k∑
z=1

P (x, z|θ)∇θ log P (x, z|θ).

Finally, we observe that P (x, z|θ) = P (z|x, θ)P (x|θ) so our expression is

MIT 6.7900 Fall 2024 5

= 1
P (x|θ)

k∑
z=1

P (z|x, θ)P (x|θ)∇θ log P (x, z|θ) =
k∑

z=1
P (z|x, θ)∇θ log P (x, z|θ).

In summary, we’ve determined that

∇θ log P (x|θ) =
k∑

z=1
P (z|x, θ)∇θ log P (x, z|θ)

but can we interpret intuitively what this gradient update is doing? Let’s look at the
terms in the sum individually:

∇θ log P (x, z|θ) = ∇θ log
[
P (x, |z, θ)P (z|θ)

]
.

This expression is almost exactly what our update rule would be if we only had a
single Gaussian. It’s moving the mean of each Gaussian N(x|µz, Σz) to the data
point x(i) that we’re computing the update rule for.

Now for the other term. We see that each update of the Gaussians is weighted
by

P (z|x, θ)
or how much each Gaussian explains the data point in question.

Finally, consider what behavior we’d see if we summed the gradients over the
entire dataset. Over many updates, each Gaussian is pulled to the data points that
it best explains.

4.2 Interpretation as Expectation-Maximization

The Expectation-Maximization (EM) algorithm is another formulation for optimiz-
ing the likelihood: maxθ L(D; θ). It works in two steps:

• E-Step: posterior assignments. Given the current estimate of the cluster pa-
rameters, for each data point x(i), compute weights Q(z|x) = P (z|x, θ) encod-
ing the probability that x(i) is in cluster z.

• M-Step: Given fixed weights Q(z|x), update the cluster parameters:

θ ←− θ + η
k∑

z=1
Q(z|x)∇θ log P (x, z|θ)

Note: In the “true” EM algorithm, we run the M step to convergence before
running the E step again. However, the nice connection we want you to see is
that if we run the gradient step only once in the M-step, the algorithm in this
section is exactly equivalent to the algorithm in the previous section!

	Auto-regressive Generative Models
	Two Kinds of Generative Models
	Kernel Density Estimation
	Gaussian Mixture Models
	Optimize via Gradient Ascent
	Interpretation as Expectation-Maximization

