
6.7900 Fall 2024: Lecture Notes 18

1 Missing data

Recap: In the previous lecture, we introduced the different types of missing data,
categorized as follows:

1. Missing Completely at Random (MCAR). Missingness is independent of both
observed and latent variables X, Y .

2. Missing at Random (MAR). Missingness depends only on observed data (not
latent variables)

3. Missing Not at Random (MNAR or NMAR). Missingness can depend on
something besides the observed data.

1.1 What to do when data is missing?

Why do anything? Many standard machine learning algorithms need complete data
to run. Additionally, in order to ensure quality of results we might need to effectively
address missing values. A few options for addressing missing data:

1. Visualization. Start by visualizing data to identify patterns of missingness.

2. Discard data. Remove data points or features with missing values.

• Pros: Simple to implement and often the default in software.

• Cons: Leads to loss of data and potential bias if data is not MCAR.

3. Information in the missingness. We might have some useful information in
whether or not a value is missing. Treat missingness as a feature or category,
especially when working with categorical data.

4. Single imputation. Replace missing values with a single estimate. E.g. use
the mean of the observed value or a random sample from the observed values
(need MCAR assumption to reduce bias). Alternatively use regression to esti-
mate the missing features from the other observed features (MAR assumption,
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see readings to better understand the connection between this method and the
MAR assumption).

5. Multiple imputation. Similarly to single imputation, we aim to estimate the
missing value (e.g. using regression), but we want to add some noise/uncertainty
about the missing data values. Generate multiple estimates of missing values
to account for uncertainty.

6. Full Bayesian model. Model is also over the x values (as opposed to only
modeling p(y|x) as we have done in the past). This approach requires careful
modeling.

2 Dimensionality reduction

2.1 Principle Component Analysis (PCA)

Motivating example for Principle Component Analysis. We often make lots of
noisy and possibly redundant measurements to try to understand some underlying
phenomenon.

Consider a ball attached to a spring that moves only along a single axis (w1).
Although there are three spatial dimensions (w1, w2, w3), the motion of the ball
is confined to one axis. Imagine using three cameras to record this movement,
resulting in six redundant and noisy features (x1, x2, . . . , x6). PCA helps reduce this
redundancy by identifying the primary axis of variation.

Figure 1: Motivating example for PCA. The ball is only moving in the w1 axis, but
we get 6 features (x1, . . . x6).
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Problem setup for PCA

• x(n) is a D × 1 vector

• Pre-process by zero-centering so 1
N

∑N
n=1 x(n) = 0D

• Assume: we want to approximate the data with its projection onto a low-
dimensional subspace with orthonormal basis w1, ..., wL, which are the princi-
ple components. x(n) ≈

∑L
ℓ=1 z

(n)
ℓ wℓ = Wz(n) =: x̂(n)

Note: x̂(n) can be defined as a linear combination of the W basis since
we assume that they are orthonormal basis (linear sub-space assumption).

• Goal: the projection should be ”close” to the original data (square loss):

min
N∑

n=1
∥x(n) − x̂(n)∥2 = min

W,Z
∥XT − WZT ∥2

F = min
W,Z

∥X − ZW T ∥2
F

– Optimization: the optimization is over W (D × L) and Z(N × L), where
W is the collection of principle components (orthonormal basis for the
subspace). Z is telling us where in the subspace W we are projecting our
x, so W is the direction and Z are the weights.

– Constraint: W represents an orthonormal basis.

Note: if we find the best basis W , we could instead use −1 times any
basis vector, −1 times the corresponding z values, and get the same result

Solving when L = 1:
Assume that the data is zero-centered:

∑N
n=1 x(n) = 0D. Let w1 represent an

orthonormal basis (a unit vector).
For L = 1, we aim to minimize the projection error:

min
w1,z

N∑
n=1

∥x(n) − z
(n)
1 w1∥2.

Expanding the squared error:

N∑
n=1

(
(x(n))⊤x(n) − 2z

(n)
1 w⊤

1 x(n) + (z(n)
1 )2w⊤

1 w1
)

.

Simplify by dropping terms constant in z
(n)
1 and w1, and noting that w⊤

1 w1 = 1:

min
w1,z

N∑
n=1

−2z
(n)
1 w⊤

1 x(n) + (z(n)
1 )2.
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Figure 2: Visualization of the projection x(n)

Approach for solving this optimization: alternate between optimizing z and w.

• We take the derivative with respect to z
(n)
1 (for each n) and set it to 0 (we also

check the second order condition that the objective is convex). The solution is
z

(n)
1 = w⊤

1 x(n). Note that w⊤
1 x(n) is the scalar projection of the data in the w1

direction.

• Next, in order to find w1, we plug in z
(n)
1 = w⊤

1 x(n) in the objective. So we
want to minimize

−
N∑

n=1
(w⊤

1 x(n))2 = −w⊤
1

[
N∑

n=1
x(n)(x(n))⊤

]
w1

Since we assume that
∑N

n=1 x(n) = 0D, then the term
∑N

n=1 x(n)(x(n))⊤ is the
empirical covariance Σ̂. We also need to include the constraint on W that is
an orthonormal basis (since L = 1, the constraint reduces to w⊤

1 w1 = 1), so
we use Lagrangian and optimize:

w⊤
1 Σ̂w1 − λ1(w⊤

1 w1 − 1)

We take the derivative with respect to w1 and set it to 0: Σ̂w1 = λ1w1, so the
best w1 is an eigenvector of the empirical covariance. In order to find which
eigenvector it is, we plug it back into the objective:

−w⊤
1 Σ̂w1 = −λ1w⊤

1 w1 = −λ1

Note that in order to minimize the objective, we want the maximum value λ1.
So the best w1 is the eigenvector of covariance with the largest eigenvalue.

Notes on the solution
For L > 1, we can solve inductively (more details in the book by Murphy). When
we get to the Lagrangian step, we will use the constraints: w⊤

ℓ wℓ = 1 and ∀k ∈
{1, ..., ℓ − 1}, w⊤

ℓ wk = 0:

• Next basis vector is a unit vector

• Next basis vector is orthogonal to all previous vectors
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