6.7900 Fall 2024: Lecture Notes 17

1 Gaussian Processes 2

Recap: Last class we introduced Gaussian processes. As a reminder, we can define
a Gaussian process as “a collection of random variables, any finite number of which
have a joint Gaussian distribution” [Rasmussen and Williams 2006]. We write f ~
GP(m, k) where m(z) = E[f(x)] is the mean function and k(z,2") = E[(f(z) —
m(z))(f(z") — m(z))] the covariance function or kernel. Common choices for these
are m(z) = 0 and the squared exponential kernel:

1 & (2 — 2)?
k(x,m/) _ 0,2 exp(—i Z (dl%d))
d=1

where the signal variance o2 and lengthscales ¢2 are hyperparameters.

1.1 Fitting hyperparameters

In the last class, we saw how to fit the parameters given some hyperparameters. But
how do we select such hyperparameters? Many techniques have been developed
for this. A very common one is to use maximum likelihood estimation over them.
Luckily most Gaussian processes software packages directly support this. In Figure
from 10 datapoints randomly sampled from a Gaussian process we fit using sklearn
another Gaussian process with maximum likelihood estimation of the hyperparame-
ters and see that the hyperparameters found are very close to the original ones. The
code for this was:

signal_stddev_init = 1.0

kern_fit = signal_stddev_initx*x2*RBF (length_scale=1.0,length_scale_bounds=(0.01, 100))
gpfit = GaussianProcessRegressor(kernel=kern_fit,n_restarts_optimizer=10)
gpfit.fit(xobs,yobs)
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Original kernel: 2#k2 * RBF(length_scale=0.3)
Fit kernel: 2.39%2 x RBF(length_scale=0.275)
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Figure 1: Fitting the hyperparameters of a Gaussian process.

1.2 Observation noise

So far we've been assuming that we observed f(x) directly, but often the actual
observation y has additional noise. For example, let’s assume that we know that the
noise is independent and Gaussian:

f o~ GP(m, k), y(n) ~ (™) + ™, ™ % A0, 72)

We observe {(z(™,y()}_, and want to learn the latent f. Because the sum of
independent Gaussians is a Gaussian with means summed and covariances summed,
the mean of y(™ is m(z(™) and the covariance Cov(y™,y™)) = k(z(™ (")) 4

721{n = n'}. So our new Gaussian process fitting problem is: We compare n not z be-
cause e;ve1_1 f.OI' same x
y(l:N) N K(X,X)+ 2T K(X, X’) g:;ltr'lmse is indepen-
(X7 KX, X) K(X', X"

Note, that while we are using y for the training data, at test time here we are
assuming that we are aiming to still find the distribution of the underlying function
not the noisy observations. Figures |2 and |3| show the output of fitting a Gaussian
process on the noisy observations to obtain either the distribution of f(z) or that of

Y.

1.3 Extrapolation

Extrapolation refers to making a prediction beyond the observed data. Typically
since we have no data in these regions the behavior of the model largely depends
on the intrinsic assumption inside of the model.
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Figure 2: Fitting f(x) from noisy y

Figure 3: Fitting noisy y from noisy y

For example, when using GPs with a squared exponential kernel, for data points
that are more than a handful of length scales from other data points will revert to
prior behavior. See Figure [4| for an example of this happening with a population

growth prediction model:
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Figure 4: Fitting the population growth data as an example of Gaussian process

extrapolation behavior.

Note, however, that often in machine learning we are in a different extrapolation
behavior where we do not have a single dataset/time-series like in the human pop-
ulation growth example but instead have multiple datasets/time-series. Examples
of this are vital sign records of many patients, purchase behavior for many books,
and life cycles of many cells. Is this still extrapolation?
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1.4 More than one input

Our illustrations have almost all been for one input so far, but in real life, it’s typical
to have more than one input. What could go wrong?

Regression in high dimensions is a fundamentally hard problem (without ad-
ditional assumptions). One way to understand this is by looking at the distance
between random points in high dimensions highlighted in Figure |5 When D=500
all the points are greater than 50 units apart!
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[Binois, Wycoff 2022]

Figure 5: Histogram of squared inter-point distances between 10,000 uniformly
randomly sampled points on [0, 1]7.

If we use a Gaussian process either we make the lengthscales much larger than
the scale of observations or otherwise for almost all points we would revert to the
prior. In practice, this is a very active area of research where several improvements
have been proposed.

1.5 Missing data

A very common real-life form of "noise” is missing data. This can be problematic
because typical supervised learning algorithms require having a full feature matrix
X and label vector Y. So how do we deal with the cases where some of our data is
missing? It depends on how the data is missing.

Let M,, = 1 if feature d in data point n is missing, else 0. Assume Y and X s
are observed and X,,;s is missing. We can formalize the types of "missingness” in
three categories:

1. Missing Completely at Random (MCAR): where missingness doesn’t depend
on latent or observed X, Y. Formally: p(M|Xps, Ximis, Y) = p(M). An exam-
ple of this is that some data entries were corrupted. This is very convenient
from a modeling perspective but mostly unrealistic.
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2. Missing at Random (MAR): where missingness depends only on observed (not
latent) data. Formally: p(M|Xops, Xmis, Y) = p(M|Xps,Y). An example
could be assuming that whether we get a response to an income question
depends entirely on the age that we fully observe. This is more realistic but
still misses important cases.

3. Not Missing at Random (NMAR or MNAR): where missingness can depend on
something besides the observed data. For example, the probability of missing-
ness might be a direct function of the unobserved and unknown value (e.g. the
likelihood of responding to the income question is a function of the income)
or there are confounders (e.g. we don’t collect data on education, but educa-
tion determines the likelihood of income response). This is the most realistic
assumption in many cases, but, in practice, we need other strong modeling
assumptions to make practical progress.
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