
6.7900 Fall 2024: Lecture Notes 16

1 Gaussian Processes

1.1 Motivation

In real-world regression problems, we often have a target variable y that varies
smoothly along some observed dimensions x. Beyond smoothness, we may lack
additional information about the relationship between y and x, with no parametric
model available to define this relationship. These problems often involve spatio-
temporal data, where x includes both spatial and temporal dimensions. We assume
access to a limited set of labeled data points (x(i), y(i)), and our goal is to predict
the value of y at an unseen x.

Key characteristics of these problems include:

• Sparse, limited data; data may be expensive or difficult to collect

• A smooth, nonlinear relationship between x and y

• Unknown form of the relationship between x and y

• Need for uncertainty quantification: given a particular x, how confident are
we in the predicted value of y?

Examples of such problems:

• Predicting ocean currents at various locations on Earth over time

• Predicting rocket lift as a function of variables like re-entry speed and angle of
attack

For such settings, conventional supervised models (e.g., neural networks, deci-
sion trees) may be less effective due to 1) limited training data and 2) difficulty in
capturing smoothness properties. This motivates the use of a Gaussian process, a
type of distribution suited for these conditions.
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Figure 1: Five samples from a six-dimensional multivariate Gaussian with distance-
dependent covariance (M = 6, d = 1). The y-axis shows the drawn values along
each dimension, while the x-axis indicates the spatial locations associated with each
dimension.

1.2 Multivariate Gaussian with Distance-dependent Covariance

As an intermediate step towards Gaussian processes, consider a multivariate Gaus-
sian with distance-dependent covariance. Recall that a multivariate Gaussian distri-
bution on y ∈ RM is defined as:

p(y) ∝ e− 1
2 (y−µ)T Σ−1(y−µ) (1)

where µ is the mean and Σ is the covariance matrix.
Now, interpret each dimension yi as corresponding to a spatial location xi ∈ Rd.

Here, yi ∈ R (the i-th component of y) represents the value at spatial location xi.
The covariance between yi and yj is defined as:

E[(yi − µi)(yj − µj)] = Σij (2)

Suppose that the covariance depends on the spatial distance between xi and xj:

Σij = ρ(||xi − xj ||) (3)
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where ρ is a positive, monotonically decreasing function. If we draw y from p(y),
then components of y corresponding to nearby x locations will take similar values.
This results in the desired smoothness property: for similar points xi and xj , the
values yi and yj are likely to be similar.

Figure 1 shows samples from a multivariate Gaussian with distance-dependent
covariance, illustrating smoothness in the x-y relationship.

1.3 What is a Gaussian Process?

A Gaussian process is essentially a distribution over y in the limit as M → ∞,
allowing x to vary continuously.

Formally, a Gaussian process GP(µ, k) is a random function f mapping from
x ∈ Rd to y ∈ R, defined by a mean function µ(x) and covariance function k(x, x′),
such that:

µ(x) = E[f(x)] (4)

k(x, x′) = E[(f(x) − µ(x))(f(x′) − µ(x′))] (5)

where the distribution over [f(x1), f(x2), . . . , f(xM )] is multivariate Gaussian for
any finite sequence x1, x2, . . . , xM .

1.4 Inference with a Gaussian Process

Suppose we have a set of observed data points (x1, y1), (x2, y2), . . . , (xN , yN ) and
want to predict the y-values at new points xN+1, xN+2, . . . , xN+M .

For convenience, denote the training data as matrix X ∈ RN×d and test data as
X ′ ∈ RM×d, with training labels Y ∈ RN . The joint distribution of [f(X), f(X ′)] is
Gaussian.

Assuming µ is the zero function, the posterior distribution of f(X ′) given f(X) =
Y has a mean and covariance:

E[f(X ′)|f(X) = Y ] = k(X ′, X)k(X, X)−1Y (6)

Cov[f(X ′)|f(X) = Y ] = k(X ′, X ′) − k(X ′, X)k(X, X)−1k(X, X ′) (7)

where k(X, X) is the covariance matrix for training points, k(X ′, X) is the covari-
ance between test and training points, and k(X ′, X ′) is the covariance for test points
alone.

Exercise: (How) do the mean and covariance change when the µ is not zero?

Figure 2 illustrates that the Gaussian process produces different uncertainties of
the value of f(x) for different values of x. In regions far from the observed training
data, there is more uncertainty in the value of f(x).
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Figure 2: Gaussian process inference of y = f(x) given four labeled (x, y) pairs
marked by an × (d = 1). The green line indicates the mean of the Gaussian process
while the margins indicate ±2 standard deviations. The blue dashed line indicates
the original function used to generate the data.

1.5 Design of Kernel Function k

In practice, some rules of thumb help guide kernel design. A common choice is the
squared exponential kernel:

k(x, x′) = σ2 exp
(

− 1
2ℓ2 ||x − x′||2

)
(8)

where σ represents the variance scale of f(x) values, and ℓ is the length scale in
x-space, controlling how rapidly f varies. The parameters σ and ℓ are known as
the hyperparameters of the Gaussian process and can be optimized to maximize the
likelihood of the observed data.
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