6.7900 Fall 2024: Lecture Notes 16

1 Gaussian Processes

1.1 Motivation

In real-world regression problems, we often have a target variable y that varies
smoothly along some observed dimensions x. Beyond smoothness, we may lack
additional information about the relationship between y and z, with no parametric
model available to define this relationship. These problems often involve spatio-
temporal data, where z includes both spatial and temporal dimensions. We assume
access to a limited set of labeled data points (z(9, (%)), and our goal is to predict
the value of y at an unseen .
Key characteristics of these problems include:

* Sparse, limited data; data may be expensive or difficult to collect
* A smooth, nonlinear relationship between x and y
* Unknown form of the relationship between z and y

* Need for uncertainty quantification: given a particular z, how confident are
we in the predicted value of y?

Examples of such problems:
* Predicting ocean currents at various locations on Earth over time

* Predicting rocket lift as a function of variables like re-entry speed and angle of
attack

For such settings, conventional supervised models (e.g., neural networks, deci-
sion trees) may be less effective due to 1) limited training data and 2) difficulty in
capturing smoothness properties. This motivates the use of a Gaussian process, a
type of distribution suited for these conditions.
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Figure 1: Five samples from a six-dimensional multivariate Gaussian with distance-
dependent covariance (M = 6, d = 1). The y-axis shows the drawn values along
each dimension, while the x-axis indicates the spatial locations associated with each
dimension.

1.2 Multivariate Gaussian with Distance-dependent Covariance

As an intermediate step towards Gaussian processes, consider a multivariate Gaus-
sian with distance-dependent covariance. Recall that a multivariate Gaussian distri-
bution on y € RM is defined as:

p(y) e~ 3= TE (y—p) (1)

where . is the mean and ¥ is the covariance matrix.
Now, interpret each dimension 3’ as corresponding to a spatial location z* € R,
Here, y* € R (the i-th component of y) represents the value at spatial location z°.
The covariance between 3* and v’ is defined as:

El(y’ — u')(y’ — )] = 2y 2)
Suppose that the covariance depends on the spatial distance between z* and z7:

Sy = pllla’ — 27])) 3)
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where p is a positive, monotonically decreasing function. If we draw y from p(y),
then components of y corresponding to nearby x locations will take similar values.
This results in the desired smoothness property: for similar points ' and 2/, the
values 3 and 37 are likely to be similar.

Figure [1| shows samples from a multivariate Gaussian with distance-dependent
covariance, illustrating smoothness in the z-y relationship.

1.3 What is a Gaussian Process?

A Gaussian process is essentially a distribution over y in the limit as M — oo,
allowing x to vary continuously.

Formally, a Gaussian process GP(u, k) is a random function f mapping from
r € R? to y € R, defined by a mean function y(x) and covariance function k(z, 2'),
such that:

p(z) = E[f(2)] 4)
k(z,2') = B[(f(z) — p(2))(f () — ()] (5)
where the distribution over [f(z!), f(2?),..., f(™)] is multivariate Gaussian for

any finite sequence z', 22, ..., 2™

1.4 Inference with a Gaussian Process

Suppose we have a set of observed data points (z',y'), (22,42),..., (2", y") and
want to predict the y-values at new points V1, gV+2 N +M,

For convenience, denote the training data as matrix X € RV*? and test data as
X' € RMxd with training labels Y € R"™. The joint distribution of [f(X), f(X')] is
Gaussian.

Assuming 4 is the zero function, the posterior distribution of f(X’) given f(X) =

Y has a mean and covariance:

Y

E[f(X)f(X) =Y] = k(X', X)k(X, X)7'Y (6)

Cov[f(XNf(X)=Y] = k(X" X") — k(X', X)k(X, X)) k(X, X") 7)

where k(X, X) is the covariance matrix for training points, k(X’, X) is the covari-
ance between test and training points, and k(X’, X’) is the covariance for test points
alone.

[Exercise: (How) do the mean and covariance change when the p is not zero? J

Figure |2|illustrates that the Gaussian process produces different uncertainties of
the value of f(z) for different values of . In regions far from the observed training
data, there is more uncertainty in the value of f(x).
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Figure 2: Gaussian process inference of y = f(x) given four labeled (z,y) pairs
marked by an x (d = 1). The green line indicates the mean of the Gaussian process
while the margins indicate +2 standard deviations. The blue dashed line indicates
the original function used to generate the data.

1.5 Design of Kernel Function &

In practice, some rules of thumb help guide kernel design. A common choice is the
squared exponential kernel:

1
k') = o exp (~ 5 lle o/ ®)

where o represents the variance scale of f(z) values, and ¢ is the length scale in
z-space, controlling how rapidly f varies. The parameters ¢ and ¢ are known as
the hyperparameters of the Gaussian process and can be optimized to maximize the
likelihood of the observed data.
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