
6.7900 Fall 2024: Lecture Notes 14

1 Robustness

We discuss distributionally robust optimization. We have training data in the form
of (x, y) pairs drawn from a distrubtion P but the test data comes from a distribution
Q different from P . However we know Q is not too far, within a KL-divergence of ϵ.
We write down the distributionally robust optimization criterion as

min
θ

max
D(P ||Q)

Ez∼Q[L(z, θ)]

If this optimization were tractable, and the true test distribution Q∗ satisfies D(Q∗||P ) ≤
ϵ. Then the test error is upper bounded by the DRO objective

Ez∼Q∗ [L(z, θ)] ≤ max
D(P ||Q)

Ez∼Q[L(z, θ)]

Figure 1: Distributionally robust optimization posits a min max formulation of learn-
ing objective to handle any distribution Q∗ in KL ball of Q.

1.1 Adversarial Robustness

For adversarial robustness, we want to make sure our learned classifier is robust
against any perturbation in a ball.
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Figure 2: For adversarial robustness we’re minimizing a min max criterion where
the minimization is taken over learned parameters and the max is taken over a
perturbation ball.

min
θ

∑
x,y∈S

max
δ∈∆

Loss(x + δ, y; θ)

For finding an adversarial example we can solve the inner maximization

max
δ∈∆

Loss(x + δ, y; θ)

We can solve this via projected gradient descent onto a feasible set ∆ in this case
the euclidean ball of radius ϵ.

δ = P∆(δ + α∇δLoss(x + δ, y; θ))

Now we move onto learning the classifier. To do this we use Danskin’s theorem.

∇θ max
δ∈∆

Loss(x + δ, y; θ) = ∇θLoss(x + δ∗, y; θ)

where δ∗ = maxδ∈∆ Loss(x + δ, y; θ). This implies we can optimize through
the max by just finding the maximum value. This leads us to a simple adversarial
training algorithm

1. Select minibatch B

2. For each (x, y) ∈ B compute adversarial example δ∗(x)

3. Update parameters

θ = θ − α

|B|
∑

x,y∈B

∇θLoss(x + δ∗(x), y; θ)
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Figure 3: The goal is to find a perturbation δ where the classificaiton moves across
the decision boundary.

At this point we list some additional considerations. Yes, we need extra expres-
sive power to find a well-fitting mdoel that is robust on the training set. The sample
complexity of robust generalization is greater than for regular learning. As it turns
out, it’s possible to ”certify” robustness and show that no adversarial examples exist
nearby a specific new example.

Figure 4: Robust classifiers are harder to learn than brittle classifiers. They require
more expressive power at the decision boundary. They also require more data to
learn the small fluctuations at the decision boundaries.



MIT 6.7900 Fall 2024 4

1.2 Fairness

Suppose our data distributions consists of K unknown subgroups. We would like
to ensure that the error rates of the estimated predictor are the same across these
groups to the extent possible. For z ∼ Pk being the data drawn from the k’th
group (to be clear the group identification is unknown). For Ez∼Pk

[L(z, θ)] being
the expected loss within group k (we cannot calculate this). Let αk be the fraction
of individual that belong to group k. To balance subgroup error we minimize

min
θ

max
k

Ez∼Pk
[L(z, θ)]

We can solve this optimizaiton through a robust DRO objective without any knowl-
edge of the underlying demographics except for the size of the smallest group. Here
we observe

max
k

Ez∼Pk
[L(z, θ)] ≤ max

Q:Dχ2 (Q||P )≤r
[L(z, θ)]

for r = maxk(1/αk−1)2 = (1/ mink αk−1)2 where Dχ2(Q||P ) =
∫

(Q(z)
P (z)−1)2P (z)dz =∫ Q(z)2

P (z) dz − 1.
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