
6.7900 Fall 2024: Lecture Notes 13

1 Transformers

1.1 Attention Mechanism For Images

This section is to illustrate the attention mechanism, and how it is built up to be the
full transformer model. Our application is predicting the next word in a sentence
associated with an image. The sentence so far is “A woman is throwing a ”with
“frisbee”being the desired next word which can be seen in the image. Let h ∈ Rd be
the context vector given by an RNN. Let an image M ∈ RH×W be convolved with
a set of d filters or kernels to form Z ∈ RH×W ×d. Here zij ∈ Rd is the result of the
inner product between the d filters at position (i, j) ∈ RH×W . We then score each
relative position sij = score(h, zij). Then we compute attention weights defined as
the softmax of the scores sij .

aij = esij∑
k∈[H],ℓ∈[W ] eskℓ

The weighted aggregation is defined as the following d dimensional vector

c =
∑

i∈[H],j∈[W ]
aijzij

Then we combine c with the state vector h to create the word “frisbee”.

1.2 Key-Query-Value

The key-query-value attention mechanism is typically explained via an analogy to
querying databases. In lecture we first introduce the attention mechanism with no
learnable parameters and then with learnable parameters. A query q representing a
word such as “food ”is used to find a key kî where î = arg maxi{⟨q, ki⟩} and return
the value vî.

We define the attention mechanism as follows. Let x1, x2, ..., xn ∈ Rd be the
vector embeddings of a sentence. Let Wq, Wk, Wv ∈ Rd×d be query, key, and value
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Figure 1: Attention Mechanism For Predicting Word In Sentence Corresponding to
Image.

Figure 2: Attention with learnable weights.

matrices . Let q = Wqxn. Let vi = Wvxi, let ki = Wkxi. Let K and V be the set of
ki’s and vi’s respectively. Then we define

A(q, K, V ) =
∑

i∈[N ]

eq·ki∑
j∈[N ] eq·kj

vi

As stated, the attention mechanism is permutation invariant. To make this a sensible
model for sequence modeling we add positional encodings to the words that can
be chosen to be a sinusoidal function. For the full transformer model, we utilize
multiple heads per layer which are concatenated and transformed before being fed
into an MLP.
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Figure 3: Sinuoidal positional encoding added to word embeddings to break per-
mutation symmetry of attention mechanism.

2 Generalization

We make the following definitions. A training set is the data used by the learning
algorithm to fit the model parameters. The validation set is our proxy for the test set,
used for selecting modeling choices, including types of features, hyperparameters,
etc. Finally the test set is for deployment and final performance assessment, which
can’t be used iteratively to revise architectures.

Let F̂M be the hypothesis class comprised of predictors f̂ℓ for ℓ ∈ [M ]. We
use the validation set to evaluate which of the f̂ℓ we should adopt. The validation
set S = {(xi, yi), i = 1, ..., N} for (xi, yi) drawn i.i.d from a distribution P . The
test examples are also drawn from the same distribution P . Let the loss function
L(y, f(x)) return either a class label or a probability distribution over labels.

RS(f) = 1
N

N∑
i=1

L(yi, f(xi))

Let the expected test risk be defined as follows

R(f) = E(x,y)∼P [L(y, f(x))].

We typically select f̂ = arg minf∈F̂M
RS(f) and hope that RS(f̂) ≈ R(f̂). We would

like to ensure the empirical validation risk RS(f̂) for the chosen classifier is close
to the corresponding test risk R(f̂) with high probability over the randomness in
drawing the validation set.
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Key Idea: We consider a stronger requirement, that this holds uniformly for all
f ∈ F̂M the difference between the test and validation loss is small with high prob-
ability.

PS∼P (∀f ∈ F̂M , |RS(f) − R(f)| ≤ ϵ) ≥ 1 − δ

Or equivalently the probability that there exists an estimator that has larger than ϵ
test error is small.

PS∼P (∃f ∈ F̂M , |RS(f) − R(f)| ≥ ϵ) ≤ δ

The key is to understand what is the smallest ϵ for which this statement holds as
a function of δ, N, and M . We denote this quantity ϵ(δ, N, M). For intuition, as
N increases, ϵ decreases. With more data there is smaller generalization error. As
δ increases, ϵ decreases. As the probability that there is an estimator that fails, the
smaller the generalization error on the successful estimators. Finally as M increases,
ϵ increases. As the number of estimators that are being considered increases, the
greater the generalization error.

Now we derive a bound on ϵ(δ, N, M). We start by replacing ∃ with ∀ as is a
standard with union bound.

PS∼P (∃f ∈ F̂M , |RS(f) − R(f)| ≥ ϵ) ≤ PS∼P (∪∀f∈F̂ |RS(f) − R(f)| ≥ ϵ) (1)

Applying union bound yields

≤
∑
f∈F̂

PS∼P (|RS(f) − R(f)| ≥ ϵ) (2)

Then applying hoeffding’s inequality for the average of independent bounded ran-
dom variables (we can assume the loss is bounded in [0, 1] without loss of general-
ity). We obtain

≤
∑
f∈F̂

2 exp(−2Nϵ2) = 2M exp(−2Nϵ2) (3)

Solving 2M exp(−2Nϵ2) ≤ δ for ϵ we find ϵ(δ, N, M) ≤
√

1
N log(M

δ ).
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