
6.7900 Fall 2024: Lecture Notes 12

1 Motivation

We have all kinds of data in this world that we might wish to model and learn from,
spanning images, text, audio, social networks, sensor networks, traffic patterns, and
more. Choosing a suitable neural network architecture for a given data modality in-
volves considerations that can dramatically affect both performance and tractability.
Key considerations include:

1. Fitting inductive biases and equivariances to the problem: We often want
architectures that naturally respect the symmetry or structure of the data. For
example, images have a 2D grid structure with translational symmetries, while
graphs have permutation-invariant node orderings.

2. Computational tractability in forward and backward passes: The model
needs to scale well with input size and allow efficient backpropagation. Dense,
fully-connected architectures on large inputs (like N × N images) can be pro-
hibitively expensive.

3. Input/Output compatibility: The network should be able to ingest data in a
form that respects the domain’s inherent structure (e.g., grid-like for images,
graph structure for networks) and produce outputs of a compatible form.

4. Favorable optimization dynamics: Certain architectures and parameteriza-
tions lead to smoother optimization landscapes or are known to converge
more reliably, which can be crucial in practice.

Consider the task of processing high-resolution images (size N × N). Using a
Multilayer Perceptron (MLP) would imply having on the order of O(N2) input di-
mensions, which could make the model extremely large. Additionally, MLPs lack
intrinsic notions of translation or scale invariance, and they struggle to process
variable-size structured inputs.

Limitations like these motivated the development of specialized architectures:
Convolutional Neural Networks (CNNs): Designed to exploit the 2D grid struc-

ture of images, enabling parameter sharing and translation equivariance. Graph

1



MIT 6.7900 Fall 2024 2

Neural Networks (GNNs): Designed to operate on graphs, respecting their inher-
ent permutation invariance and making it natural to process data with arbitrary
topology and varying size.

In this lecture, we will explore both CNNs and GNNs, understanding how their
architectural design choices overcome the drawbacks of naive MLP approaches.

2 Convolutional Neural Networks (CNNs)

Figure 1: A convolutional kernel scanning across an image.

2.1 Definition

A Convolutional Neural Network leverages the concept of convolutional filters (ker-
nels) that slide over the spatial dimensions of the input. Rather than having fully-
connected layers that learn a unique weight for every input pixel, CNNs learn small
filters that capture local patterns. These filters are repeatedly applied across the
image, allowing the model to be:

• Translation-equivariant: A feature learned at one location can be detected at
any other location.

• Parameter-efficient: The same filter is reused across the entire image, drasti-
cally reducing the number of parameters relative to a fully-connected layer.

Mathematically, for a given layer, a CNN performs (see Figure 1):

h(l)
ij = σ

(∑
u,v

W(l)
uv · x(l−1)

i+u,j+v + b(l)
)



MIT 6.7900 Fall 2024 3

where W(l)
uv is the convolutional kernel, σ(·) is a nonlinearity, and (i, j) indexes the

spatial location in the output feature map.

2.2 Features CNNs Learn

As we move deeper into a CNN, the learned filters tend to progress from capturing
simple, low-level features (edges, corners, textures) in early layers to more com-
plex, high-level features (parts of objects, entire objects) in later layers. These layers
combine and pool information from earlier ones, building up hierarchical represen-
tations of the input. We can visualize the features learned at different layers of a
CNN as shown in Figure 2.

Figure 2: Convolutional kernels visualized from an intermediate layer and the
dataset images that strongly activate them.

Clarification on Feature Visualization: There was some confusion in lecture about
whether these visualized features perfectly capture what causes certain activations.
In fact, these visualizations are created through techniques like deconvolution net-
works or gradient-based optimization to find inputs that strongly activate certain
neurons. As explained in the method section of the paper [Zeiler & Fergus, arXiv:1311.2901],
these visualizations are not guaranteed to be unique or exact. The non-bijective na-
ture of deconvolution and other interpretability methods means these images are
suggestive “prototypes,” not definitive explanations.

2.3 CNN History and Advances

CNNs were first introduced in the late 20th century, with a famous early application
by Yann LeCun on the MNIST digit classification problem (LeNet-5 architecture).
Despite their promise, CNNs were not widely used until the resurgence of deep
learning methods in the 2010s. The breakthrough came with AlexNet (Krizhevsky



MIT 6.7900 Fall 2024 4

Figure 3: AlexNet, an early CNN architecture that sparked the deep learning revo-
lution in computer vision.

Figure 4: Over time, CNNs have become deeper and more accurate, as shown by
models like VGG, Inception, and ResNet on benchmarks like ImageNet.

et al., 2012), which won the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) by a large margin(see Figure 3) Since then, CNNs have evolved rapidly
(see Figure 4):

• Deeper Architectures: VGG, Inception, ResNet introduced increasingly deep
and sophisticated architectures.



MIT 6.7900 Fall 2024 5

• Better Regularization: Dropout, batch normalization, and improved optimiza-
tion methods.

• Architectural Innovations: Residual connections, attention mechanisms, and
more to ease training and improve representational power.

3 Graph Neural Networks (GNNs)

While CNNs excel at processing grid-structured data, many real-world datasets are
represented as graphs: social networks, traffic networks, molecular structures, knowl-
edge graphs, and more. Such data often does not have a regular spatial arrange-
ment. Instead, we have nodes (entities) and edges (relationships), and we want
architectures that:

• Are permutation-invariant: The ordering of nodes should not affect the out-
put.

• Are scalable to variable-sized inputs: Graphs can grow or shrink, and we need
to handle different shapes.

• Leverage topological information: Patterns in how nodes are connected are
crucial.

GNNs are designed to handle these requirements naturally.

3.1 General GNN Idea

A GNN updates node representations by aggregating features from their neighbors.
Consider a graph G = (V, E) with node features xv for v ∈ V and potentially edge
features euv for (u, v) ∈ E. A single GNN layer can be summarized as (see also
Figures 5, 6):

• Aggregate: Each node v collects information from its neighbors N (v)

m(l)
v = AGGREGATE({h(l−1)

u , euv : u ∈ N (v)})

• Combine: Each node updates its own representation based on the aggregated
messages

h(l)
v = COMBINE(h(l−1)

v , m(l)
v )



MIT 6.7900 Fall 2024 6

Figure 5: General scheme of GNN message passing and update.

Figure 6: More detailed breakdown of how node embeddings are updated using
neighbor embeddings.

After several such layers, the final node embeddings h(L)
v can be used for tasks

like node classification, or pooled to form a graph-level representation for graph
classification.

Exercise: If you wanted to incorporate edge features in the update scheme,
how would you do it?

Hint: Incorporating edge features typically means augmenting the aggregation
function with edge-specific information. For example, when collecting messages
from neighbors u ∈ N (v), you could combine both the neighbor’s node embedding
h(l−1)

u and the edge embedding euv via a learned function:

m(l)
v =

∑
u∈N (v)

ϕ(h(l−1)
u , euv)

where ϕ is a neural network that fuses node and edge features.

3.2 Are All GNNs Convolutional?

Classical GNNs, often called Graph Convolutional Networks (GCNs), draw analogy
to convolutions by performing a weighted aggregation of neighbor features similar



MIT 6.7900 Fall 2024 7

to a convolution operation on irregular domains. However, training very deep GCNs
often leads to ”oversmoothing,” where node embeddings converge to similar values
and lose discriminative power.

Not all GNN variants use a strictly ”convolutional” approach. Some GNN designs
leverage different mechanisms:

• Random Walks or Diffusions: Methods like GraphSAGE, or those that incor-
porate personalized PageRank, use random walk distributions to gather infor-
mation from the graph.

• Attention Mechanisms (GAT): Assign different importances to different neigh-
bors rather than a uniform or fixed weighting.

• Message Passing Variants: Many models explore different aggregation func-
tions (max, mean, sum, MLP-based) or learn different types of edge transfor-
mations.

The key takeaway: While the “graph convolution” idea is common, the field of
GNNs is broader and includes many designs that do not strictly resemble classical
CNN-style convolutions.

Figure 7: Illustration of how graph eigenvectors can differentiate regions of a graph,
giving a positional reference frame.

3.3 Graph Positional Encodings

Graph structure can also be encoded using positional information. Unlike grids
where pixel coordinates are explicit, nodes in graphs do not come with a natural



MIT 6.7900 Fall 2024 8

positional embedding. One approach is to use the eigenvectors of the graph Lapla-
cian (the matrix Λ derived from the adjacency matrix and degree matrix); see Fig-
ure 7. These eigenvectors, called Laplacian eigenvectors, can serve as a “positional
basis” that provides a notion of global and local structure. The eigenvalues and
eigenvectors capture fundamental properties of the graph’s topology, and encoding
each node’s coordinates along these eigenvectors can provide a powerful topological
signature.

Such positional encodings can help GNNs overcome some of their inherent per-
mutation invariance by providing a shared frame of reference, often improving per-
formance on tasks that rely on global structural understanding.


	Motivation
	Convolutional Neural Networks (CNNs)
	Definition
	Features CNNs Learn
	CNN History and Advances

	Graph Neural Networks (GNNs)
	General GNN Idea
	Are All GNNs Convolutional?
	Graph Positional Encodings


