
6.7900 Fall 2024: Lecture Notes 10

1 Decision Trees and Random Forest

In supervised learning, our goal is to predict the label y from the covariates (x1, x2, . . . ).
Decision trees use a divide-and-conquer approach by recursively splitting the data.
The tree is constructed greedily, and at each node, we aim to find a split such that on
each branch (each subset of the data after the split), a constant predictor performs
well.

1.1 Procedure for Constructing a Decision Tree

• For each feature xi, consider all possible values in the training data and at-
tempt to split the data based on each (feature, value) pair.

• For each potential split, divide the data accordingly and evaluate the perfor-
mance using metrics such as the Gini index, entropy, or squared error (for
regression tasks).

• Choose the split that minimizes the impurity score or error. Recursively split
the data according to this criterion.

• Stopping criteria typically include the number of examples in a node, tree
depth, or an impurity score below a certain threshold.

Gini index: The Gini index is a measure of impurity ranging from 0 to 1,
where 0 indicates perfect purity (all samples belong to the same class), and 1
indicates maximum impurity. It is defined as:

NL

∑
k∈C

p̂L
k (1 − p̂L

k ) + NR

∑
k∈C

p̂R
k (1 − p̂R

k )

where NL and NR represent the number of examples in the left and right
branches respectively, p̂L

k and p̂R
k are the proportions of class k in the left and

right branches, and C is the set of classes.

1



MIT 6.7900 Fall 2024 2

During inference, for any given data point, we traverse the tree according to the
splitting conditions until we reach a leaf node. We then use the probability estimate
associated with this leaf node for the final prediction.

1.2 Issues with Decision Trees

• Decision trees can grow very large.

• Small changes in the data can lead to different trees, as the tree-building pro-
cess is greedy.

• Trees often overfit the training data, leading to poor generalization on new
data.

1.3 Random Forest Ensemble

A solution to the overfitting problem is to construct multiple decision trees, ran-
domizing the tree construction, and using an ensemble of trees. In the ensemble,
we average the probability predictions from different trees and threshold the final
result.

Randomization methods include:

1. Data sampling: Randomly sample N examples with replacement to construct
each tree.

2. Tree construction randomization: For each split, consider only a random
subset of features.

Ensemble is better than individual: If the individual trees have independent
errors and each tree is correct with probability µ ∈ (0.5, 1], then the ensemble’s
average prediction has a higher probability of being correct. This probability is
calculated using the binomial distribution:

Bin

(
n >

M

2
∣∣M, µ

)
=

M∑
k= M

2 +1

(
M

k

)
µk(1 − µ)M−k

This probability approaches 1 for large M , even if individual trees are only
slightly better than random guessing.

Ensemble methods work best when the errors of individual trees are indepen-
dent. This is often true when covariates contain independent information, as op-
posed to highly correlated features like pixels in an image.



MIT 6.7900 Fall 2024 3

2 Feature Representation & Complex Models

We can create non-linear features and use them in our linear models. While hand-
crafted or automated features can work, learning the features directly (e.g., through
neural networks) often yields better performance, especially in complex tasks like
image classification, drug discovery, or text generation.

2.1 Composing Complex Models (MLP)

A few different methods:

• A simple linear model: f(x; θ) = wT x + b θ = {w, b}

• A linear model with feature mapping: f(x; θ) = wT ϕ(x) + b θ = {w, b}

• A linear model with learnable linear features is still just a linear model:

f(x; θ) = wT
(
W (1)x + b(1)

)
+ b θ = {w, b, W (1), b(1)}

• One hidden layer model (linear + non-linear + linear): By adding a non-linear
function like tanh, we obtain a universal approximator, capable of approximat-
ing any continuous function as the number of hidden units m increases:

f(x; θ) = wT tanh
(
W (1)x + b(1)

)
+ b θ = {w, b, W (1), b(1)}

• Multi-layer perceptron (MLP): Adding more layers increases the model’s ca-
pacity to learn complex relationships:

f(x; θ) = wT tanh
(
W (2) tanh

(
W (1)x + b(1)

)
+ b(2)

)
+b θ = {w, b, W (1), b(1), W (2), b(2)}

(a) Example model structure (b) One-hidden layer model example

Note: Even when using learned linear features ϕ(x) with a linear predictor
f(x), the model remains linear unless we introduce non-linearity. The non-
linearity is necessary for increasing model capacity.



MIT 6.7900 Fall 2024 4

Figure 2: Common examples of non-linear activation functions used in neural net-
works to introduce non-linearity and enhance model expressiveness.

2.2 Expressibility of Neural Networks

By introducing non-linearity, neural networks become universal function approxi-
mators.

Universal approximation theorem (informal): A two-layer neural network
(one hidden layer) can approximate any continuous function from a compact
input set K ⊂ Rd to Rm to an arbitrary accuracy. The activation function must
be non-linear and non-polynomial.

If a two-layer network is a universal function approximator, why do we use
deep networks? While two-layer networks can approximate any continuous func-
tion, certain types of mappings are more efficiently represented by deeper architec-
tures. For example, in vision tasks, there is often a natural hierarchical structure:
some neurons can detect edges, others can detect combinations of edges to form
shapes, and higher layers can detect entire objects. A multi-layer model that learns
in this hierarchical manner can capture the underlying structure of images more
efficiently than a two-layer network, which would have to learn the entire mapping
from pixels to output in one step, requiring significantly more neurons and training
time to achieve similar performance.

Effect of Depth (informal): Some functions that are easily computable with a
finite-width deep architecture (multiple layers with a fixed number of neurons)
may require exponentially many hidden units if expressed using only two lay-
ers.

Examples of feature transformations and decision boundaries + visualizations
are in the lecture slides.


	Decision Trees and Random Forest
	Procedure for Constructing a Decision Tree
	Issues with Decision Trees
	Random Forest Ensemble

	Feature Representation & Complex Models
	Composing Complex Models (MLP)
	Expressibility of Neural Networks


