
6.790 Homework 7 Solutions

This homework is for study purposes and will not be handed in or graded.

Contents

1 Generative model warmup 2

2 VAE 4

3 Mixture models 8

4 Diffusion models 13

5 Flow Matching 15

1

MIT 6.790 Fall 2024 2

1 Generative model warmup

1. (a) We are considering a variety of different generative models, trained on some dataset
D = {x(i)}nx=1.
For each of the following models, describe what parametric models (including neural
networks) are learned and how we use them (and/or the training data) to obtain a value
for the density p(x), for a novel input x (or explain that it’s difficult/impossible).

i. kernel density estimator
ii. auto-regressive model

iii. Gaussian mixture
iv. continuous-time probability flow (out of our scope, feel free to skip)
v. variational auto-encoder

vi. diffusion model (out of our scope, feel free to skip)

Solution:
i. Kernel density estimator. It is a non-parametric model so no parameters are

learned. Given a new datapoint, and choices of kernel K and bandwidth h:

p(x) =
1
nh

n∑
i=1

K

(
x− x(i)

h

)

ii. Auto-regressive model. Assuming x can be decomposed into m orthogonal co-
ordinates xj, a model is learned to estimate from training data for every j ∈
[1,m] pθ,j(xj|x1:j−1).

p(x) = pθ,1(x1)

m∏
j=2

pθ,j(xj|x1:j−1)

iii. Gaussian mixture. The parameters of a Gaussian mixture are typically learned
through the EM-algorithm from which we can derive the means µk, covariance
Σk and mixture weights πk.

p(x) =

K∑
k=1

πk N(x|µk,Σk)

iv. Normalizing flow. The parameters of the transformation, typically parameterized
with an invertible neural network, are learnedvia gradient descent to maximize
the likelihood of the observed data under the transformed distribution. Given a
learned normalizing flow fθ the likelihood of a new point is:

p(x) = pZ(fθ(x))det
∂fθ
∂x

where pZ is the density under the base distribution.

MIT 6.790 Fall 2024 3

v. Variational auto-encoder. The parameters of the autoencoder neural network are
learned via gradient descent to maximize the Evidence Lower Bound (ELBO) ob-
jective. It is intractable to compute the likelihood of a point under a VAE, as it
would require integrating over the latent variable, however one can estimate a
lower bound through the ELBO:

logp(x) ⩾ Eqϕ(z|x) [logpθ(x | z)] − KL(qϕ(z | x) ||p(z))

vi. Diffusion model. The parameters of the neural network describing the score func-
tion of the diffusion model are learned through gradient descent with the score
matching objective. The likelihood is not tractable for SDE based diffusion mod-
els, but using the ODE formulation we can compute it similar to normalizing flows
via:

logp(x) = logpT (xT) −

∫T
0

tr
(
∂fθ(xt, t)

∂xt

)
dt

where xt is the trajectory obtained running the ODE process in reverse and fθ the
learned drift function and the term inside the integral is the trace of the Jacobian
of f.

(b) Now, for each of these same models, describe how to draw iid samples from the learned
density.

i. kernel density estimator
ii. auto-regressive model

iii. Gaussian mixture
iv. continuous time probability flow
v. variational auto-encoder

vi. diffusion model

Solution:

i. Kernel density estimator. Randomly sample a datapoint from the training data x(i) and
then sample a point from the kernel distribution centered at x(i).

ii. Auto-regressive model. Sample x1 from pθ,1, and then recursively sample xj from
pθ,j(·|x1:j−1).

iii. Gaussian mixture. Sample a mixture k proportionally to πk, and then sample a point
from N(µk,Σk).

iv. Continuous-time flow. Sample a point from the base distribution z ∼ pZ, follow the
vector field forward (see last question).

v. Variational auto-encoder. Sample a point z from the prior distribution. Run the decoder
to get the parameters of the final distribution (e.g. µx = pθ(x|z), sample from this final
distribution.

MIT 6.790 Fall 2024 4

vi. Diffusion model. Sample a point from the prior distribution, xT ∼ pT , run the reverse
diffusion process with the learned score to obtain a sample x at time 0.

2. We can interpret logistic regression as determining a conditional distribution p̂(Y | X).

(a) Explain how to sample from p̂(Y | X = x) for a novel value x.

Solution: Having learned the parameters w and b from the training data, the condi-
tional probability of p̂(Y = 1|X = x) = σ(w⊤x + b) where σ is the sigmoid function.
Therefore to sample from it, one can sample a random element from r = U[0, 1] and
return 1 if r < σ(w⊤x+ b) and 0 otherwise.

(b) Let’s explore the ability of logistic regression to represent posterior distributions. Imagine
a training set D = {(x(i),y(i))}ni=1 where x(i) = (1) for all i, and where y(i) = +1 for
proportion p of the data (and 0 for proportion 1 − p).
Show that in the limit of large n, the learned likelihood p̂(Y = 1 | X = (1)) converges to
p.

Solution:
In the limit of large n we can assume that our training data contains a proportion of
exactly p positives and 1 − p negatives. Let q = σ(w + b) = p̂(Y | X = (1)). The
corresponding binary cross-entropy loss to minimize is:

L(w,b) = −
1
n

n∑
i=1

[
y(i) log(σ(w+ b)) + (1 − y(i)) log(1 − σ(w+ b))

]
therefore:

L(q) = −p logq− (1 − p) log(1 − q)

Taking the derivative w.r.t. q and setting that to 0 we obtain that q = p, therefore
p̂(Y = 1 | X = (1)) = p.

2 VAE

This question closely follows the development in Kingma, Diederik P., and Max Welling. "An
introduction to variational autoencoders." Foundations and Trends in Machine Learning.

3. (a) If our goal is to construct a model of a data distribution p̂θ(x), what advantage is there in
turning it into an apparently harder problem of modeling p̂θ(x, z) for some latent variable
z?

Solution: In the case of a Gaussian mixture, p(x, z) = p(x | z)p(z) has a simpler
parametric form than p(x).

https://arxiv.org/pdf/1906.02691.pdf
https://arxiv.org/pdf/1906.02691.pdf

MIT 6.790 Fall 2024 5

(b) Consider a distribution over x ∈ R such that p(x ⩽ v) = F(v) for some cdf F.
i. How is F(x) distributed if x ∼ p(x)?

Solution: Unif(0, 1)

ii. If we wanted to make a latent variable model with p(z) = Unif(0, 1) , which of the
following choices for p(x | z) would guarantee that p(x) =

∫
z p(x | z)p(z)dz?√

A distribution that assigns probabilty 1 to x = F−1(z).
⃝ A distribution that assigns probabilty 1 to x = F−1(p(z)).
⃝ A Gaussian N(F(z), 1).

iii. If we wanted to make a latent variable model with p(z) = N(0, 1)(z) , which of the
following choices for p(x | z) would guarantee that p(x) =

∫
z p(x | z)p(z)dz?

⃝ A distribution that assigns probabilty 1 to x = F−1(z).
⃝ A distribution that assigns probabilty 1 to x = F−1(p(z)).
√

A distribution that assigns probabilty 1 to x = F−1(G(z)), where G is the
Gaussian cdf.

⃝ A Gaussian N(F(z), 1).
iv. Now, let’s say we want to train a neural network with parameters θ to represent

p(x | z), by maximizing the log likelihood of some training set D = {x(i)}ni=1. What
loss function would we minimize, ignoring (for now) computational intractability?

Solution:

L(θ) = −

n∑
i=1

log
∫
z

pθ(x
(i) | z)p(z)dz

v. Why is it hard to minimize, especially in high dimensions?

Solution: We don’t generally have a closed form for the integral and numerical
integration is expensive in high dimensions.

vi. Provide an approximation to the loss function, based on sampling.

Solution:

L(θ) = −

n∑
i=1

log
1
m

m∑
zj∼N(0,1);j=1

pθ(x
(i) | z(j))

vii. What problems might we have with this estimator if we sample z ∼ N(0, I) in high
dimensions?

Solution: The “weights” pθ(x
(i) | z(j)) would generally be near 0 and it would

take a lot of samples to get a useful gradient for optimization.

(c) The strategy in a VAE is to learn a new distribution qϕ(z | x), called the inference model

MIT 6.790 Fall 2024 6

that will hopefully generate samples that will tend to have high values of pθ(x
(i) | z).

Let’s focus on a single data-point x.
i. We observe that

logpθ(x) = log
pθ(x, z)
pθ(z | x)

Verify this.

Solution: It follows directly from the identity:

pθ(x)pθ(z | x) = pθ(x, z)

dividing by the conditional probability and taking the logarithm.

ii. If we are going to sample using the inference model, then it’s useful to view this as

logpθ(x) = Eqϕ(z|x)

[
log

pθ(x, z)
pθ(z | x)

]
which we can (apparently gratuitously) rewrite as

logpθ(x) = Eqϕ(z|x)

[
log

pθ(x, z)qϕ(z | x)

pθ(z | x)qϕ(z | x)

]
But this lets us divide into two terms that are useful:

logpθ(x) = Eqϕ(z|x)

[
log

pθ(x, z)
qϕ(z | x)

]
+ Eqϕ(z|x)

[
log

qϕ(z | x)

pθ(z | x)

]
and they have names!

logpθ(x) = ELBOθ,ϕ(x) + KL
(
qϕ(z | x) || pθ(z | x)

)
We are going to work on maximizing the ELBO rather than logpθ(x). Why is that
more straightforward?

Solution: Because we have learned pθ(x|z), from this obtaining pθ(z|x) is in-
tractable.

iii. Show that ELBOθ,ϕ(x) ⩽ logpθ(x). When are they equal?

Solution: Above we showed:

logpθ(x) = ELBOθ,ϕ(x) + KL
(
qϕ(z | x) || pθ(z | x)

)
the KL is always non-negative, therefore ELBOθ,ϕ(x) ⩽ logpθ(x). They are equal
when the KL is zero, therefore qϕ(z | x) = pθ(z | x) for all z.

iv. Write an expression for the ELBO in terms of the data likelihood and KL
(
qϕ(z |

x) || pθ(z | x)
)
. Assuming that our neural networks have infinite representational

capacity and the optimization works perfectly, if we optimize ELBOθ,ϕ(x), what can
we say about pθ(x)?

MIT 6.790 Fall 2024 7

Solution:
ELBOθ,ϕ(x) = logpθ(x) − KL

(
qϕ(z | x) || pθ(z | x)

)
assuming infinite capacity and perfect optimization for any value of θ, ϕ will be
chosen to minimize the KL divergence and therefore chosen such that qϕ(z | x) =

pθ(z | x) and the KL is zero. Then the optimization of θ boils down to maximizing
the likelihood of the data. With infinite capacity pθ(x) will converge to model
exactly the training data distribution.

(d) It’s time to maximize the ELBO via stochastic gradient descent!
i. First, with respect to θ. If we represent pθ(x, z) = pθ(x | z)p(z) where p(z) is a fixed

spherical Gaussian, and pθ(x | z) = N(NNθ(z),σ2) where NNθ(z) is a deterministic
neural network parameterized by θ and σ is a small fixed standard deviation, write
an expression for

∇θELBOθ,ϕ(x)

Solution:

ELBOθ,ϕ(x) = Eqϕ(z|x)

[
logpθ(x|z) + logp(z) − logqϕ(z | x)

]

∇θELBOθ,ϕ(x) = Eqϕ(z|x)

[
−

1
σ2 JNNθ(z)(θ)

⊤(NNθ(z) − x)

]

ii. Now, with respect to ϕ. This is harder because ϕ appears in the distribution that
we’re taking the expectation over:

ELBOθ,ϕ(x) = Eqϕ(z|x)

[
logpθ(x, z) − logqϕ(z | x)

]
So we can’t just push the gradient inside the expectation, tempting though it may
be. Instead, we need to do the reparameterization trick! (See Murphy book 2 section
6.3.5) Instead of taking the expectation with respect to a distribution q over z, we’ll
define a new random variable ϵ ∼ N(0, 1) and define z = g(ϵ,ϕ, x). Now,

∇ϕELBOθ,ϕ(x) = ∇ϕEϵ

[
logpθ(x, z) − logqϕ(z | x)

]
= Eϵ∇ϕ

[
logpθ(x, z) − logqϕ(z | x)

]
≈ ∇ϕ

[
logpθ(x, z) − logqϕ(g(ϵ,ϕ, x) | x)

]
Write an expression for this gradient, assuming we represent qϕ(z | x) = N(NNϕ(x),σ2)

where NNϕ(x) is deterministic a neural network parameterized by ϕ and σ is a small
fixed standard deviation. It will depend on g. (We won’t go into strategies for choos-
ing g, but the paper describes it nicely.)

MIT 6.790 Fall 2024 8

Solution:

∇ϕELBOθ,ϕ(x) ≈ ∇ϕ

[
logpθ(x, z) − logqϕ(g(ϵ,ϕ, x) | x)

]
= ∇ϕ logpθ(x, z) −∇ϕ logqϕ(g(ϵ,ϕ, x) | x)

= Jg(ϵ,ϕ,x)(ϕ)
⊤(∇z logpθ(x|z) +∇z logp(z))

+
1

2σ2∇ϕ∥NNϕ(x) − g(ϵ,ϕ, x)∥2

= Jg(ϵ,ϕ,x)(ϕ)
⊤(∇zNNθ(z) −

z− µ∗
σ2
∗

)

+
1
σ2 (JNNϕ(x)(ϕ) − Jg(ϵ,ϕ,x)(ϕ))

⊤(NNϕ(x) − g(ϵ,ϕ, x))

where p(z) = N(µ∗,σ2
∗I).

3 Mixture models

4. Consider a simple mixture model involving two spherical Gaussians in two dimensions. So
x ∈ R2 and

P(x|θ) =

2∑
z=1

P(z|θ)P(x|z, θ) =
2∑

z=1

pzN(x;µz,σ2
zI)

We will initialize the parameters of this mixture model as follows

p1 = p2 = 0.5, µ1 = µ2, σ2
2 = 2σ2

1

The initialization is also shown graphically in Figure 1 (top middle). The circles are drawn
exactly one standard deviation (e.g., σ1) away from the corresponding mean (e.g., µ1). The
larger dashed circle corresponds to the second component with larger variance.

Given the initialization above, which one of the figures a-d) of Figure 1 represents the mixture
model that we get after one EM-iteration? Briefly justify your answer.

MIT 6.790 Fall 2024 9

a) −2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

a) −2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

a) −2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

b) −2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

c) −2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

d) −2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

Figure 1: Top left) observed data; top right) initial mixture model; a-d) candidate mixture models
resulting from one EM update.

Solution: Key points: Full credit given for choosing option b) and providing justification.

The EM algorithm proceeds by first assigning points to Gaussians based on posterior prob-
abilities (E-step), and then re-estimating the Gaussians (and the mixing proportions) based
on these weighted assignments. The correct figure is b).

The Gaussian with larger variance (#2) receives higher posterior assignments for points
that are further away. It therefore moves closer to the overall mean of the points, over-
shooting slightly as the points at the center of the initialization are assigned primarily to
Gaussian #1 with smaller variance. One can analogously explain why Gaussian #1 moves
less.

5. Suppose we have a k-component mixture of spherical Gaussians model. Which of the follow-
ing initializations of mixing proportions, means, and variances have a chance of recovering
the underlying clusters assuming our assumption about the model family is correct? If the
initialization is likely to fail, describe how. We use a shorthand [k] = {1, . . . ,k}.

1. pj = 1/k, j ∈ [k]; µj = µ0, j ∈ [k], for some common µ0; σj = σ0, j ∈ [k], for some
common σ0.

2. pj = 1/k, j ∈ [k]; µj = µ0, j ∈ [k], for some common µ0; σj, j ∈ [k], are set to different
values

MIT 6.790 Fall 2024 10

3. pj = 1/k, j ∈ [k]; µj, j ∈ [k], are set to randomly chosen data points; σj = σ0, j ∈ [k], for
some common σ0.

4. pj, j ∈ [k] are randomized; µj = µ0, j ∈ [k], for some common µ0; σj = σ0, j ∈ [k], for
some common σ0.

Solution: Key points: Full credit given for stating that 1 and 4 are likely to fail due to
identical mean and variance updates, while 2 and 3 have a chance at success. Partial credit
given for saying that only 1 is likely to fail.

1. The initialization fails. Since the Gaussians are all equal initially, the posterior as-
signments are also all equal. All the Gaussians in the mixture are updated the same,
as if there was only a single Gaussian.

2. The initialization can succeed. Compare to the earlier question. The different vari-
ances of the Gaussians result in different posterior assignments allowing them to
separate.

3. The initialization can succeed. The posterior assignments in the first E-step differ.
This can fail if one or more Gaussians are centered on outlier points. The resulting
posterior assignments would progressively focus around those individual points and
the Gaussians would peak (variance going to zero) around those individual points.

4. The initialization fails. This is the same case as the first one. The posterior assign-
ments are spread uniformly across the points for each Gaussian. Specifically, each
point is assigned to each Gaussian with posterior probability that equals the prior
mixing proportion. These probabilities do not vary from point to point. As a result,
the weighted mean, variance estimates of the Gaussians in the M-step are the same
for all Gaussians, and the problem repeats.

6. In this question and the next we revisit the ELBO introduced in Section 2, and show how it
can be also used to view the EM algorithm for estimating a mixture of k spherical Gaussians
model.

Let D = {xi}i=1,...,n be our observed data where xi ∈ Rd. Given any choice of distribu-
tions Q(z|xi), provide explicit parameter estimates of the mixture model as a function of these
choices (M-step). In other words, solve θ̂ = arg maxθ ELBO(Q; θ) where

ELBO(Q; θ) =
n∑

i=1

{
k∑

z=1

Q(z|xi) log
[
pzN(xi;µz,σ2

zI)
]
+H(Qz|xi)

}

Solution: Key points: Derive maximizing values for each µz, σz, and pz, by taking gradi-
ents or applying inequalities. In the case of pz, the solution must take into account the
constraint that

∑k
z=1 pz = 1, e.g. using Lagrange multipliers.

MIT 6.790 Fall 2024 11

We derive the maximizing pz,µz,σ2
z, z ∈ [k], either by finding stationary points of the

ELBO, or performing the Lagrange multipliers method on the ELBO whenever one of our
maximizing parameters is constrained. Note that, given the choice of posterior Q(z|xi), the
H(Qz|xi) term vanishes in any partial derivative of ELBO with respect to the parameters.
In addition, for clarity, let gz(xi) denote the probability density function of N(xi;µz,σ2

zI)

evaluated at xi.

First we show the derivation of maximizing means µz, z ∈ [k]. Each µz is independent,
and for any given µz, the stationary point is given by:

∂

∂µz
ELBO(Q; θ) =

∂

∂µz

n∑
i=1

k∑
z ′=1

Q(z ′|xi)(logpz ′ + loggz ′(xi)) = 0

=
∂

∂µz

n∑
i=1

Q(z|xi)

(
−

1
2σ2

z

||xi − µz||
2
)

= 0

⇒
n∑

i=1

Q(z|xi)
1
σ2 (x

i − µz) = 0

⇒ µz

n∑
i=1

Q(z|xi) =

n∑
i=1

Q(z|xi)xi

where in the second line we remove terms that don’t depend on µz. So our estimate for µz

is

µ̂z =

∑n
i=1 Q(z|xi)xi∑n
i=1 Q(z|xi)

.

The variances σ2
z are similarly unconstrained and maximized at the stationary points of

the ELBO. Notice that our process of arg-maximizing the µz did not depend on the σ2
z, so

we can use our chosen µz as a given in our process for arg-maximizing σ2
z. We perform a

similar calculation as the above µz derivation:

∂

∂σ2
z

ELBO(Q; θ) =
∂

∂σ2
z

n∑
i=1

k∑
z ′=1

Q(z ′|xi)(logpz ′ + loggz ′(xi)) = 0

=
∂

∂σ2
z

n∑
i=1

Q(z|xi)

(
−
d

2
log(2πσ2) −

1
2σ2

z

||xi − µz||
2
)

= 0

⇒
n∑

i=1

Q(z|xi)

(
−

d

2σ2
z

+
1

2σ4 ||x
i − µz||

2
)

= 0

⇒ σ2d

n∑
i=1

Q(z|xi) =

n∑
i=1

Q(z|xi)||xi − µz||
2

⇒ σ̂2
z =

∑n
i=1 Q(z|xi)||xi − µz||

2

d
∑n

i=1 Q(z|xi)
.

MIT 6.790 Fall 2024 12

Our weights pz are constrained, so we maximize the ELBO subject to
∑k

z=1 pz = 1. Apply-

ing Lagrangian multipliers, we minimize ELBO(Q; θ) − λ
(∑k

z=1 pz − 1
)

, where λ is the
multiplier:

∂

∂pz

(
ELBO(Q; θ) − λ

(
k∑

z=1

pz − 1

))
=

n∑
i=1

Q(z|xi)

pz
− λ = 0

which gives

pz =
1
λ

n∑
i=1

Q(z|xi).

In other words, we should have pz ∝
∑n

i=1 Q(z|xi) scaled by a constant to satisfy the
constraint

∑k
z=1 pz = 1. We get

λ =

n∑
i=1

k∑
z=1

Q(z|xi) = n

so we conclude that the maximizing pz is

p̂z =
1
n

n∑
i=1

Q(z|xi).

7. Recall that we can equivalently write the ELBO estimation criterion as

ELBO(Q; θ) =
n∑

i=1

{
logP(xi|θ) − KL(Qz|xi∥Pz|xi,θ)

}
Show that when Q(z|xi) = P(z|xi, θ0) for all z ∈ [k] and i = 1, . . . ,n, then

∇θ KL(Qz|xi∥Pz|xi,θ)
∣∣
θ=θ0

= 0 (vector)

for all i = 1, . . . ,n. This result ensures that ∇θELBO(Q; θ)|θ=θ0 = ∇θ

∑n
i=1 logP(xi|θ)|θ=θ0

after each E-step. In other words, the lower bound criterion not only agrees in value at θ = θ0

but it also has the same derivative as the log-likelihood.

Solution: Key points: Take the gradient of the KL divergence and show this is zero. Solu-
tions should not evaluate the KL divergence at θ = θ0 before taking the gradient.

Because Q(z|xi) does not depend on θ, the gradient of the KL divergence simplifies as:

∇θ KL(Qz|xi∥Pz|xi,θ) = ∇θ

(
k∑

z=1

Q(z|xi) logQ(z|xi) −Q(z|xi) logP(z|xi, θ)

)

=

k∑
z=1

−
Q(z|xi)

P(z|xi, θ)
∇θP(z|x

i, θ).

MIT 6.790 Fall 2024 13

Evaluating the gradient at θ = θ0, the coefficients cancel since Q(z|xi) = P(z|xi, θ0), result-
ing in

∇θ KL(Qz|xi∥Pz|xi,θ)
∣∣
θ=θ0

=

k∑
z=1

−∇θP(z|x
i, θ)

∣∣
θ=θ0

.

Finally we move the gradient outside the sum and apply the constraint
∑k

z=1 P(z|x
i, θ) = 1

for all i = 1, . . . ,n.

∇θ KL(Qz|xi∥P(z|xi, θ))
∣∣
θ=θ0

= ∇θ

(
k∑

z=1

−P(z|xi, θ)

)∣∣∣∣
θ=θ0

= ∇θ (−1)
∣∣
θ=θ0

= 0.

4 Diffusion models

8. Let’s consider a simple diffusion model in 2D. In other words, we are generating samples
x ∈ R2. The dataset available to us consists of only two points, [1, 0]T and [0, 1]T .

(a) Let βt, t = 1, 2, . . . , T refer to the noise variance we add at step t. In other words, at step
t in the forward process we update the example according to xt =

√
1 − βtxt−1 +

√
βtϵt,

where ϵt ∼ N(0, I). Let αt = 1 − βt and ᾱt =
∏t

s=1 αs. What is the resulting forward
model distribution at step t conditioned on x0? Hint: you can start by writing x2 as a
linear combination of x0 and Gaussian noise ϵ ∼ N(0, I) and note I is the identity 2d
matrix.

Solution: We can iterate the noise updates to get

x2 =
√

1 − β2(
√

1 − β1x0 +
√
β1ϵ1) +

√
β2ϵ2

where ϵi ∼ N(0, I) are independent. Simplifying this further, we get x2 =
√
ᾱ2x0 +√

1 − ᾱ2ϵ, ϵ ∼ N(0, I). Note that we only need to match the means and variances of
this xt expression conditioned on x0 since it is distributed like a Gaussian. Extending
this argument for all t, we get

xt =
√
ᾱtx0 +

√
1 − ᾱtϵ, ϵ ∼ N(0, I)

In terms of probability distributions, we can write

qt|0(x|x0) = N(x|
√
ᾱtx0, (1 − ᾱt)I)

which we also refer to as “transition kernel”.

(b) Since the forward process is applied the same to each example in our dataset, we can ask
what the distribution is over xt marginally across the examples. Write down an expression
for this distribution. You can assume that the examples are selected with equal probability,
i.e., q(x0) = 1/2 for x0 = [1, 0]T or x0 = [0, 1]T .

MIT 6.790 Fall 2024 14

Solution: We get a mixture distribution over the examples.

qt(x) =
∑
x0

q(x0)qt|0(x|x0)

=
∑
x0

q(x0)N(x|
√
ᾱtx0, (1 − ᾱt)I)

=
1
2
N(x|

√
ᾱt[1, 0]T , (1 − ᾱt)I) +

1
2
N(x|

√
ᾱt[0, 1]T , (1 − ᾱt)I)

(c) Suppose we use a simple estimation criterion for our reverse process, i.e., we find ϵθ(xt, t)
that minimizes

Ex0,t,ϵ
{
∥ϵ− ϵθ(xt(x0, ϵ), t)∥2}

where xt(x0, ϵ) =
√
ᾱtx0 +

√
1 − ᾱtϵ and x0 ∼ q(x0), ϵ ∼ N(0, I). Consider a fixed x̂.

What is the resulting optimal estimate for ϵθ(x̂, t) if our reverse model can be arbitrarily
complex? Write down the solution as an expression involving ϵ, xt(x0, ϵ) and x̂.

Solution: The squared error is minimized at the conditional mean, i.e., we wish to
calculate

E {ϵ|xt(x0, ϵ) = x̂}

where x0 is also a random variable in this expression.

(d) To evaluate your answer to the previous question note that you can think of the problem
in terms of a graphical model x0 → xt, ϵ → xt where we know the marginal distributions
over x0 and ϵ and how they give rise to xt through xt(x0, ϵ). We observe xt = x̂ and wish
to calculate the resulting posterior over ϵ. What is this posterior?

Solution: Given x̂, the posterior over ϵ can be calculated directly from the graphical
model:

P(ϵ, x̂) =
∑
x0

q(x0)N(ϵ|0, I)P(xt = x̂|x0, ϵ)

where P(xt = x̂|x0, ϵ) enforces that
√
ᾱtx0 +

√
1 − ᾱtϵ = x̂. Thus ϵ can only take two

possible values, one for each value of x0:

ϵ(x0, t) = (x̂−
√
ᾱtx0)/

√
1 − ᾱt

each with probability proportional to q(x0)N(ϵ(x0, t) |0, I).

(e) Briefly describe how the optimal answer for the reverse process, i.e., our estimate ϵθ(x̂, t)
for a fixed x̂, behaves as t becomes very large.

Solution: Both of the answers that ϵ can take converge to x̂ as ᾱt → 0. Thus the
conditional expectation will also be x̂.

MIT 6.790 Fall 2024 15

5 Flow Matching

9. This question is based on lecture 23; for more background see Yaron Lipman, Ricky T.Q. Chen,
Heli Ben-Hamu, Maximilian Nickel, and Matt Le, "Flow Matching for Generative Modeling."

Given sample space Rd we can use a continuous probability "flow" to represent a target dis-
tribution p1(x), by learning an invertible transformation from some simple known distribution
p0(x). We will use this method to model a data distribution q(x) ∼ Unif({x(1), . . . , x(n)}).

(a) A probability flow is continuous time-indexed function, such that for all t ∈ [0, 1], pt is a
pdf over Rd. We are going to think about the probability flow1 induced by fixing p0 and
p1, then defining a distribution of linear paths

x0 ∼ p0(x)

x1 ∼ p1(x)

xt = (1 − t)x0 + tx1

We’ll start by considering the case of a fixed x1. If x0 ∼ N(0, I), what is the distribution
pt(xt | x1) such that xt ∼ pt?

Solution: This is a linear combination of two Gaussian random variables. We know
(and not too hard to show!) that if Y = a1X1 + a2X2 where X1 ∼ N(µ1,σ2

1) and
X2 ∼ N(µ2,σ2

2), then Y ∼ N(a1µ1 + a2µ2,a2
1σ

2
1 + a2

2σ
2
2). So,

xt | x1 ∼ N(tx1, (1 − t)2I)

(b) What is pt(x | x1) as t → 1?

Solution: It approaches a delta distribution that assigns probability 1 to x1.

(c) Now, more generally, if x1 ∼ p1(x) what is pt(x)?

Solution:

pt(x) =

∫
x1

pt(x | x1)p(x1)dx1

(d) The whole reason we’re trying to find alternative ways of thinking about learning p1 is
that complicated densities are hard to represent and learn directly. An alternative pa-
rameterization of the whole probability flow pt is in terms of a time varying vector field
dxt/dt = vt(xt), that intuitively has the property that if we start with p0, and let the
probability “flow” as specified by this vector field, the distributions pt will match the ones
we desire and, in particular, will converge to p1 as t → 1.

1This is called a probability path in the paper.

https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2210.02747

MIT 6.790 Fall 2024 16

The continuity equation from fluid flow tells us the relationship between this velocity field
and the probability flow:

d

dt
pt(x) = −∇x · (pt(x)vt(x))

In one dimension, for intuition, this is simply2

d

dt
pt(x) = −

d

dx
pt(x)vt(x)

So now. We know what we want our probability flow to be: pt. What is the vt that will
result in our desired pt?

vt(x) =

∫
x1

x1 − x

1 − t
p(x1 | x, t)dx1

Explain intuitively why this makes sense.

Solution: If we know x1 (a "target" x value), and we are currently at x at time t, then
we only have time 1− t left, and so we had better have velocity x1−x

1−t in order to make
it there in time!
But, if we just know we are at x at time t, we don’t know where we should be heading
(that is, we don’t know x1). So, we’ll have to integrate over possible target points,
given where we are now.

(e) What is p(x1 | x, t)?

Solution:

p(x1 | x, t) =
pt(x | x1)p1(x)

pt(x)

(f) Show that our definitions of vt(x) and pt(x) satisfy the continuity equation, in 1D, and
assuming x0 ∼ N(0, 1).
It’s kind of tedious to do by hand (and Mathematica can do it!) so fine to use the fact that
for a fixed x1,

d

dt
pt(x | x1) = −

d

dx
(pt(x | x1)vt(x | x1))

d

dt
N(tx1, (1 − t)2) = −

d

dx
N(tx1, (1 − t)2)

x1 − x

1 − t

2You may have forgotten the notation but ∇x· is the divergence operator. Go look it up.

MIT 6.790 Fall 2024 17

Solution:

d

dt
pt(x) = −∇x · (pt(x)vt(x))

d

dt

∫
x1

pt(x | x1)p1(x1)dx1 = −∇x ·
(
pt(x)

∫
x1

vt(x | x1)pt(x1 | x)dx1

)
= −∇x ·

(
pt(x)

∫
x1

vt(x | x1)
pt(x | x1)p1(x1)

pt(x)
dx1

)
= −∇x ·

(∫
x1

vt(x | x1)pt(x | x1)p1(x1)dx1

)
∫
x1

(
d

dt
pt(x | x1)

)
p1(x1)dx1 =

∫
x1

(
−∇x ·

(
vt(x | x1)pt(x | x1)

))
p1(x1)dx1

By the fact in the problem, the expressions inside the parens on both sides are equal,
so these are equal.

(g) Whew! The key takeaway here was that we showed letting the velocities be

vt(x) =

∫
x1

x1 − x

1 − t
pt(x1 | x)dx1

would yield the right probability flow.
Use this insight to describe a stochastic gradient descent training procedure for learning
a neural-network approximation vθ(x, t)t to vt from dataset D = {x(1), . . . , x(n)}.

Solution: Draw

x0 ∼ p0(x)

x1 ∼ Unif(D)

t ∼ Unif(0, 1)

xt = (1 − t)x0 + tx1

Take a gradient step

θ = θ− η∇θ

(
vθ(xt, t) −

x1 − xt

1 − t

)2

(h) Finally, once we have trained vθ(xt, t), how do we sample from p̂1?

Solution: Pick a number of iterations m
x ~ Normal(0, I)

for i in [0..m-1]:

t = i / m

MIT 6.790 Fall 2024 18

x = x + v(x, t) / m

return x

	Generative model warmup
	VAE
	Mixture models
	Diffusion models
	Flow Matching

