6.790 Homework 7

This homework is for study purposes and will not be handed in or graded.

Contents

1 Generative model warmup

1. (a) We are considering a variety of different generative models, trained on some dataset $D = {\mathbf{x}^{(i)}}_{x=1}^n$.

For each of the following models, describe what parametric models (including neural networks) are learned and how we use them (and/or the training data) to obtain a value for the density $p(x)$, for a novel input x (or explain that it's difficult/impossible).

- i. kernel density estimator
- ii. auto-regressive model
- iii. Gaussian mixture
- iv. continuous-time probability flow (out of our scope, feel free to skip)
- v. variational auto-encoder
- vi. diffusion model (out of our scope, feel free to skip)
- (b) Now, for each of these same models, describe how to draw iid samples from the learned density.
	- i. kernel density estimator
	- ii. auto-regressive model
	- iii. Gaussian mixture
	- iv. continuous time probability flow
	- v. variational auto-encoder
	- vi. diffusion model
- 2. We can interpret logistic regression as determining a conditional distribution $\hat{p}(Y | X)$.
	- (a) Explain how to sample from $\hat{p}(Y | X = x)$ for a novel value x.
	- (b) Let's explore the ability of logistic regression to represent posterior distributions. Imagine a training set $\mathcal{D} = \{ (x^{(i)}, y^{(i)}) \}_{i=1}^n$ where $x^{(i)} = (1)$ for all i, and where $y^{(i)} = +1$ for proportion p of the data (and 0 for proportion $1 - p$). Show that in the limit of large n, the learned likelihood $\hat{p}(Y = 1 | X = (1))$ converges to p.

2 VAE

This question closely follows the development in [Kingma, Diederik P., and Max Welling. "An](https://arxiv.org/pdf/1906.02691.pdf) [introduction to variational autoencoders." Foundations and Trends in Machine Learning.](https://arxiv.org/pdf/1906.02691.pdf)

- 3. (a) If our goal is to construct a model of a data distribution $\hat{p}_{\theta}(x)$, what advantage is there in turning it into an apparently harder problem of modeling $\hat{p}_{\theta}(x, z)$ for some latent variable z?
	- (b) Consider a distribution over $x \in \mathbb{R}$ such that $p(x \leq v) = F(v)$ for some cdf F.
		- i. How is F(x) distributed if $x \sim p(x)$?
- ii. If we wanted to make a latent variable model with $p(z) = \text{Unif}(0,1)$, which of the following choices for $p(x \mid z)$ would guarantee that $p(x) = \int_z p(x \mid z)p(z)dz$?
	- ◯ A distribution that assigns probabilty 1 to $x = F^{-1}(z)$.
	- ◯ A distribution that assigns probabilty 1 to $x = F^{-1}(p(z))$.
	- \bigcap A Gaussian $\mathcal{N}(F(z), 1)$.
- iii. If we wanted to make a latent variable model with $p(z) = N(0, 1)(z)$, which of the following choices for $p(x | z)$ would guarantee that $p(x) = \int_z p(x | z) p(z) dz$?
	- ◯ A distribution that assigns probabilty 1 to $x = F^{-1}(z)$.
	- ◯ A distribution that assigns probabilty 1 to $x = F^{-1}(p(z))$.
	- ◯ A distribution that assigns probabilty 1 to $x = F^{-1}(G(z))$, where G is the Gaussian cdf.
	- \bigcap A Gaussian $\mathcal{N}(F(z), 1)$.
- iv. Now, let's say we want to train a neural network with parameters θ to represent $p(x \mid z)$, by maximizing the log likelihood of some training set $\mathcal{D} = \{x^{(i)}\}_{i=1}^n$. What loss function would we minimize, ignoring (for now) computational intractability?
- v. Why is it hard to minimize, especially in high dimensions?
- vi. Provide an approximation to the loss function, based on sampling.
- vii. What problems might we have with this estimator if we sample $z \sim \mathcal{N}(0, I)$ in high dimensions?
- (c) The strategy in a VAE is to learn a new distribution $q_{\phi}(z | x)$, called the *inference model* that will hopefully generate samples that will tend to have high values of $p_\theta(x^{(i)} \mid z)$. Let's focus on a single data-point x .
	- i. We observe that

$$
\log p_\theta(x) = \log \frac{p_\theta(x, z)}{p_\theta(z \mid x)}
$$

Verify this.

ii. If we are going to sample using the inference model, then it's useful to view this as

$$
\log p_{\theta}(x) = \mathbb{E}_{q_{\phi}(z|x)} \left[\log \frac{p_{\theta}(x, z)}{p_{\theta}(z | x)} \right]
$$

which we can (apparently gratuitously) rewrite as

$$
\log p_{\theta}(x) = \mathbb{E}_{q_{\phi}(z|x)} \bigg[\log \frac{p_{\theta}(x, z) q_{\phi}(z | x)}{p_{\theta}(z | x) q_{\phi}(z | x)} \bigg]
$$

But this lets us divide into two terms that are useful:

$$
\log p_{\theta}(x) = \mathbb{E}_{q_{\phi}(z|x)} \left[\log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} \right] + \mathbb{E}_{q_{\phi}(z|x)} \left[\log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)} \right]
$$

and they have names!

$$
\log p_{\theta}(x) = ELBO_{\theta,\varphi}(x) + KL(q_{\varphi}(z \mid x) \parallel p_{\theta}(z \mid x))
$$

We are going to work on maximizing the ELBO rather than $\log p_{\theta}(x)$. Why is that more straightforward?

- iii. Show that $ELBO_{\theta,\phi}(x) \leq \log p_{\theta}(x)$. When are they equal?
- iv. Write an expression for the ELBO in terms of the data likelihood and KL $(\mathfrak{q}_\Phi(z))$ $(x) \parallel p_{\theta}(z | x)$. Assuming that our neural networks have infinite representational capacity and the optimization works perfectly, if we optimize $ELBO_{\theta,\phi}(x)$, what can we say about $p_{\theta}(x)$?
- (d) It's time to maximize the ELBO via stochastic gradient descent!
	- i. First, with respect to θ . If we represent $p_{\theta}(x, z) = p_{\theta}(x | z)p(z)$ where $p(z)$ is a fixed spherical Gaussian, and $p_{\theta}(x \mid z) = \mathcal{N}(NN_{\theta}(z), \sigma^2)$ where $NN_{\theta}(z)$ is a deterministic neural network parameterized by $θ$ and $σ$ is a small fixed standard deviation, write an expression for

$$
\nabla_{\theta} ELBO_{\theta, \phi}(x)
$$

ii. Now, with respect to ϕ. This is harder because ϕ appears in the distribution that we're taking the expectation over:

$$
ELBO_{\theta,\Phi}(x) = \mathbb{E}_{q_{\Phi}(z|x)} [\log p_{\theta}(x,z) - \log q_{\Phi}(z|x)]
$$

So we can't just push the gradient inside the expectation, tempting though it may be. Instead, we need to do the *reparameterization trick!* (See Murphy book 2 section 6.3.5) Instead of taking the expectation with respect to a distribution q over z, we'll define a new random variable ϵ ∼ $N(0, 1)$ and define $z = g(\epsilon, \phi, x)$. Now,

$$
\nabla_{\Phi} ELBO_{\theta, \Phi}(x) = \nabla_{\Phi} \mathbb{E}_{\varepsilon} \left[\log p_{\theta}(x, z) - \log q_{\Phi}(z \mid x) \right]
$$

=
$$
\mathbb{E}_{\varepsilon} \nabla_{\Phi} \left[\log p_{\theta}(x, z) - \log q_{\Phi}(z \mid x) \right]
$$

$$
\approx \nabla_{\Phi} \left[\log p_{\theta}(x, z) - \log q_{\Phi}(g(\varepsilon, \phi, x) \mid x) \right]
$$

Write an expression for this gradient, assuming we represent $\mathsf{q}_\Phi(z \,|\: x) = \mathcal{N}(N N_\Phi(x), \sigma^2)$ where $NN_{\phi}(x)$ is deterministic a neural network parameterized by ϕ and σ is a small fixed standard deviation. It will depend on g. (We won't go into strategies for choosing g, but the paper describes it nicely.)

3 Mixture models

4. Consider a simple mixture model involving two spherical Gaussians in two dimensions. So $x \in \mathbb{R}^2$ and

$$
P(x|\theta) = \sum_{z=1}^{2} P(z|\theta)P(x|z,\theta) = \sum_{z=1}^{2} p_z N(x; \mu_z, \sigma_z^2 I)
$$

We will initialize the parameters of this mixture model as follows

$$
p_1 = p_2 = 0.5
$$
, $\mu_1 = \mu_2$, $\sigma_2^2 = 2\sigma_1^2$

The initialization is also shown graphically in Figure [1](#page-4-0) (top middle). The circles are drawn exactly one standard deviation (e.g., σ_1) away from the corresponding mean (e.g., μ_1). The larger dashed circle corresponds to the second component with larger variance.

Given the initialization above, which one of the figures a-d) of Figure [1](#page-4-0) represents the mixture model that we get after one EM-iteration? Briefly justify your answer.

Figure 1: Top left) observed data; top right) initial mixture model; a-d) candidate mixture models resulting from one EM update.

- 5. Suppose we have a k-component mixture of spherical Gaussians model. Which of the following initializations of mixing proportions, means, and variances have a chance of recovering the underlying clusters assuming our assumption about the model family is correct? If the initialization is likely to fail, describe how. We use a shorthand $[k] = \{1, \ldots, k\}$.
	- 1. $p_j = 1/k$, $j \in [k]$; $\mu_j = \mu_0$, $j \in [k]$, for some common μ_0 ; $\sigma_j = \sigma_0$, $j \in [k]$, for some common σ_0 .
	- 2. $p_j = 1/k$, $j \in [k]$; $\mu_j = \mu_0$, $j \in [k]$, for some common μ_0 ; σ_j , $j \in [k]$, are set to different values
	- 3. $p_j = 1/k$, $j \in [k]$; μ_j , $j \in [k]$, are set to randomly chosen data points; $\sigma_j = \sigma_0$, $j \in [k]$, for some common σ_0 .
	- 4. p_j , $j \in [k]$ are randomized; $\mu_j = \mu_0$, $j \in [k]$, for some common μ_0 ; $\sigma_j = \sigma_0$, $j \in [k]$, for some common σ_0 .
- 6. In this question and the next we revisit the ELBO introduced in Section 2, and show how it can be also used to view the EM algorithm for estimating a mixture of k spherical Gaussians model.

Let $D = \{x^i\}_{i=1,\dots,n}$ be our observed data where $x^i \in \mathbb{R}^d$. Given any choice of distributions $Q(z|x^i)$, provide explicit parameter estimates of the mixture model as a function of these

choices (M-step). In other words, solve $\hat{\theta} = \argmax_{\theta} ELBO(Q; \theta)$ where

$$
\text{ELBO}(Q;\theta) = \sum_{i=1}^{n} \left\{ \sum_{z=1}^{k} Q(z|x^{i}) \log \left[p_{z} N(x^{i}; \mu_{z}, \sigma_{z}^{2} I) \right] + H(Q_{z|x^{i}}) \right\}
$$

7. Recall that we can equivalently write the ELBO estimation criterion as

$$
\text{ELBO}(Q; \theta) = \sum_{i=1}^{n} \left\{ \log P(x^{i}|\theta) - \text{KL}(Q_{z|x^{i}} \| P_{z|x^{i},\theta}) \right\}
$$

Show that when $Q(z|x^i) = P(z|x^i, \theta_0)$ for all $z \in [k]$ and $i = 1, ..., n$, then

$$
\nabla_{\theta} KL(Q_{z|x^i} || P_{z|x^i, \theta}) \big|_{\theta = \theta_0} = 0 \text{ (vector)}
$$

for all $i = 1,...,n$. This result ensures that $\nabla_{\theta} E L B O(Q;\theta)|_{\theta=\theta_0} = \nabla_{\theta} \sum_{i=1}^{n} \log P(x^i|\theta)|_{\theta=\theta_0}$ after each E-step. In other words, the lower bound criterion not only agrees in value at $\theta = \theta_0$ but it also has the same derivative as the log-likelihood.

4 Diffusion models

- 8. Let's consider a simple diffusion model in 2D. In other words, we are generating samples $x \in \mathbb{R}^2$. The dataset available to us consists of only two points, $[1,0]^T$ and $[0,1]^T$.
	- (a) Let β_t , t = 1, 2, ..., T refer to the noise variance we add at step t. In other words, at step t in the forward process we update the example according to $x_t = \sqrt{1-\beta_t}x_{t-1} + \sqrt{\beta_t}\epsilon_t$, where $\epsilon_t \sim N(0, I)$. Let $\alpha_t = 1 - \beta_t$ and $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$. What is the resulting forward model distribution at step t conditioned on x_0 ? Hint: you can start by writing x_2 as a linear combination of x_0 and Gaussian noise $\epsilon \sim N(0, I)$ and note I is the identity 2d matrix.
	- (b) Since the forward process is applied the same to each example in our dataset, we can ask what the distribution is over x_t marginally across the examples. Write down an expression for this distribution. You can assume that the examples are selected with equal probability, i.e., $q(x_0) = 1/2$ for $x_0 = [1, 0]^T$ or $x_0 = [0, 1]^T$.
	- (c) Suppose we use a simple estimation criterion for our reverse process, i.e., we find $\epsilon_{\theta}(x_t, t)$ that minimizes

$$
E_{x_0,t,\varepsilon}\left\{\|\varepsilon-\varepsilon_\theta(x_t(x_0,\varepsilon),t)\|^2\right\}
$$

where $x_t(x_0, \epsilon) = \sqrt{\bar{\alpha}_t}x_0 +$ √ $\overline{1-\bar{\alpha}_t}$ ϵ and $x_0 \sim q(x_0)$, $\epsilon \sim N(0, I)$. Consider a fixed \hat{x} . What is the resulting optimal estimate for $\epsilon_{\theta}(\hat{x}, t)$ if our reverse model can be arbitrarily complex? Write down the solution as an expression involving ϵ , $x_t(x_0, \epsilon)$ and \hat{x} .

- (d) To evaluate your answer to the previous question note that you can think of the problem in terms of a graphical model $x_0 \rightarrow x_t$, $\epsilon \rightarrow x_t$ where we know the marginal distributions over x_0 and ϵ and how they give rise to x_t through $x_t(x_0, \epsilon)$. We observe $x_t = \hat{x}$ and wish to calculate the resulting posterior over ϵ . What is this posterior?
- (e) Briefly describe how the optimal answer for the reverse process, i.e., our estimate $\epsilon_{\theta}(\hat{x}, t)$ for a fixed \hat{x} , behaves as t becomes very large.

5 Flow Matching

9. This question is based on lecture 23; for more background see [Yaron Lipman, Ricky T.Q. Chen,](https://arxiv.org/abs/2210.02747) [Heli Ben-Hamu, Maximilian Nickel, and Matt Le, "Flow Matching for Generative Modeling."](https://arxiv.org/abs/2210.02747)

Given sample space \mathbb{R}^d we can use a continuous probability "flow" to represent a target distribution $p_1(x)$, by learning an invertible transformation from some simple known distribution $p_0(x)$. We will use this method to model a data distribution $q(x) \sim \text{Unif}(\{x^{(1)}, \ldots, x^{(n)}\}).$

(a) A *probability flow* is continuous time-indexed function, such that for all $t \in [0, 1]$, p_t is a pdf over \mathbb{R}^d . We are going to think about the probability flow 1 1 induced by fixing \mathfrak{p}_0 and p_1 , then defining a distribution of linear paths

$$
x_0 \sim p_0(x)
$$

\n
$$
x_1 \sim p_1(x)
$$

\n
$$
x_t = (1-t)x_0 + tx_1
$$

We'll start by considering the case of a fixed x_1 . If $x_0 \sim \mathcal{N}(0, I)$, what is the distribution $p_t(x_t | x_1)$ such that $x_t \sim p_t$?

- (b) What is $p_t(x | x_1)$ as $t \rightarrow 1$?
- (c) Now, more generally, if $x_1 \sim p_1(x)$ what is $p_t(x)$?
- (d) The whole reason we're trying to find alternative ways of thinking about learning p_1 is that complicated densities are hard to represent and learn directly. An alternative parameterization of the whole probability flow p_t is in terms of a time varying vector field $dx_t/dt = v_t(x_t)$, that intuitively has the property that if we start with p_0 , and let the probability "flow" as specified by this vector field, the distributions p_t will match the ones we desire and, in particular, will converge to p_1 as $t \rightarrow 1$.

The *continuity equation* from fluid flow tells us the relationship between this velocity field and the probability flow:

$$
\frac{d}{d_t} \mathfrak{p}_t(x) = -\nabla_x \cdot (\mathfrak{p}_t(x) \nu_t(x))
$$

In one dimension, for intuition, this is simply^{[2](#page-6-2)}

$$
\frac{d}{d_t}p_t(x)=-\frac{d}{dx}p_t(x)\nu_t(x)
$$

So now. We know what we want our probability flow to be: p_t . What is the v_t that will result in our desired p_t ?

$$
\nu_t(x)=\int_{x_1}\frac{x_1-x}{1-t}p(x_1\mid x,t)dx_1
$$

Explain intuitively why this makes sense.

(e) What is $p(x_1 | x, t)$?

¹This is called a *probability path* in the paper.

²You may have forgotten the notation but $\nabla_x \cdot$ is the *divergence* operator. Go look it up.

(f) Show that our definitions of $v_t(x)$ and $p_t(x)$ satisfy the continuity equation, in 1D, and assuming $x_0 \sim \mathcal{N}(0, 1)$.

It's kind of tedious to do by hand (and Mathematica can do it!) so fine to use the fact that for a fixed x_1 ,

$$
\frac{d}{d_t} p_t(x \mid x_1) = -\frac{d}{dx} (p_t(x \mid x_1) v_t(x \mid x_1))
$$

$$
\frac{d}{d_t} \mathcal{N}(tx_1, (1-t)^2) = -\frac{d}{dx} \mathcal{N}(tx_1, (1-t)^2) \frac{x_1 - x}{1 - t}
$$

(g) Whew! The key takeaway here was that we showed letting the velocities be

$$
\nu_t(x)=\int_{x_1}\frac{x_1-x}{1-t}p_t(x_1\mid x)dx_1
$$

would yield the right probability flow.

Use this insight to describe a stochastic gradient descent training procedure for learning a neural-network approximation $v_\theta(x,t)$ t to v_t from dataset $\mathcal{D} = \{x^{(1)}, \dots, x^{(n)}\}.$

(h) Finally, once we have trained $v_{\theta}(x_t, t)$, how do we sample from \hat{p}_1 ?