
6.790 Homework 7

This homework is for study purposes and will not be handed in or graded.

Contents

1 Generative model warmup 2

2 VAE 2

3 Mixture models 4

4 Diffusion models 6

5 Flow Matching 7

1

MIT 6.790 Fall 2024 2

1 Generative model warmup

1. (a) We are considering a variety of different generative models, trained on some dataset
D = {x(i)}nx=1.
For each of the following models, describe what parametric models (including neural
networks) are learned and how we use them (and/or the training data) to obtain a value
for the density p(x), for a novel input x (or explain that it’s difficult/impossible).

i. kernel density estimator
ii. auto-regressive model

iii. Gaussian mixture
iv. continuous-time probability flow (out of our scope, feel free to skip)
v. variational auto-encoder

vi. diffusion model (out of our scope, feel free to skip)

(b) Now, for each of these same models, describe how to draw iid samples from the learned
density.

i. kernel density estimator
ii. auto-regressive model

iii. Gaussian mixture
iv. continuous time probability flow
v. variational auto-encoder

vi. diffusion model

2. We can interpret logistic regression as determining a conditional distribution p̂(Y | X).

(a) Explain how to sample from p̂(Y | X = x) for a novel value x.

(b) Let’s explore the ability of logistic regression to represent posterior distributions. Imagine
a training set D = {(x(i),y(i))}ni=1 where x(i) = (1) for all i, and where y(i) = +1 for
proportion p of the data (and 0 for proportion 1 − p).
Show that in the limit of large n, the learned likelihood p̂(Y = 1 | X = (1)) converges to
p.

2 VAE

This question closely follows the development in Kingma, Diederik P., and Max Welling. "An
introduction to variational autoencoders." Foundations and Trends in Machine Learning.

3. (a) If our goal is to construct a model of a data distribution p̂θ(x), what advantage is there in
turning it into an apparently harder problem of modeling p̂θ(x, z) for some latent variable
z?

(b) Consider a distribution over x ∈ R such that p(x ⩽ v) = F(v) for some cdf F.
i. How is F(x) distributed if x ∼ p(x)?

https://arxiv.org/pdf/1906.02691.pdf
https://arxiv.org/pdf/1906.02691.pdf

MIT 6.790 Fall 2024 3

ii. If we wanted to make a latent variable model with p(z) = Unif(0, 1) , which of the
following choices for p(x | z) would guarantee that p(x) =

∫
z p(x | z)p(z)dz?

⃝ A distribution that assigns probabilty 1 to x = F−1(z).
⃝ A distribution that assigns probabilty 1 to x = F−1(p(z)).
⃝ A Gaussian N(F(z), 1).

iii. If we wanted to make a latent variable model with p(z) = N(0, 1)(z) , which of the
following choices for p(x | z) would guarantee that p(x) =

∫
z p(x | z)p(z)dz?

⃝ A distribution that assigns probabilty 1 to x = F−1(z).
⃝ A distribution that assigns probabilty 1 to x = F−1(p(z)).
⃝ A distribution that assigns probabilty 1 to x = F−1(G(z)), where G is the

Gaussian cdf.
⃝ A Gaussian N(F(z), 1).

iv. Now, let’s say we want to train a neural network with parameters θ to represent
p(x | z), by maximizing the log likelihood of some training set D = {x(i)}ni=1. What
loss function would we minimize, ignoring (for now) computational intractability?

v. Why is it hard to minimize, especially in high dimensions?
vi. Provide an approximation to the loss function, based on sampling.

vii. What problems might we have with this estimator if we sample z ∼ N(0, I) in high
dimensions?

(c) The strategy in a VAE is to learn a new distribution qϕ(z | x), called the inference model
that will hopefully generate samples that will tend to have high values of pθ(x

(i) | z).
Let’s focus on a single data-point x.

i. We observe that

logpθ(x) = log
pθ(x, z)
pθ(z | x)

Verify this.
ii. If we are going to sample using the inference model, then it’s useful to view this as

logpθ(x) = Eqϕ(z|x)

[
log

pθ(x, z)
pθ(z | x)

]
which we can (apparently gratuitously) rewrite as

logpθ(x) = Eqϕ(z|x)

[
log

pθ(x, z)qϕ(z | x)

pθ(z | x)qϕ(z | x)

]
But this lets us divide into two terms that are useful:

logpθ(x) = Eqϕ(z|x)

[
log

pθ(x, z)
qϕ(z | x)

]
+ Eqϕ(z|x)

[
log

qϕ(z | x)

pθ(z | x)

]
and they have names!

logpθ(x) = ELBOθ,ϕ(x) + KL
(
qϕ(z | x) || pθ(z | x)

)
We are going to work on maximizing the ELBO rather than logpθ(x). Why is that
more straightforward?

MIT 6.790 Fall 2024 4

iii. Show that ELBOθ,ϕ(x) ⩽ logpθ(x). When are they equal?
iv. Write an expression for the ELBO in terms of the data likelihood and KL

(
qϕ(z |

x) || pθ(z | x)
)
. Assuming that our neural networks have infinite representational

capacity and the optimization works perfectly, if we optimize ELBOθ,ϕ(x), what can
we say about pθ(x)?

(d) It’s time to maximize the ELBO via stochastic gradient descent!
i. First, with respect to θ. If we represent pθ(x, z) = pθ(x | z)p(z) where p(z) is a fixed

spherical Gaussian, and pθ(x | z) = N(NNθ(z),σ2) where NNθ(z) is a deterministic
neural network parameterized by θ and σ is a small fixed standard deviation, write
an expression for

∇θELBOθ,ϕ(x)

ii. Now, with respect to ϕ. This is harder because ϕ appears in the distribution that
we’re taking the expectation over:

ELBOθ,ϕ(x) = Eqϕ(z|x)

[
logpθ(x, z) − logqϕ(z | x)

]
So we can’t just push the gradient inside the expectation, tempting though it may
be. Instead, we need to do the reparameterization trick! (See Murphy book 2 section
6.3.5) Instead of taking the expectation with respect to a distribution q over z, we’ll
define a new random variable ϵ ∼ N(0, 1) and define z = g(ϵ,ϕ, x). Now,

∇ϕELBOθ,ϕ(x) = ∇ϕEϵ

[
logpθ(x, z) − logqϕ(z | x)

]
= Eϵ∇ϕ

[
logpθ(x, z) − logqϕ(z | x)

]
≈ ∇ϕ

[
logpθ(x, z) − logqϕ(g(ϵ,ϕ, x) | x)

]
Write an expression for this gradient, assuming we represent qϕ(z | x) = N(NNϕ(x),σ2)

where NNϕ(x) is deterministic a neural network parameterized by ϕ and σ is a small
fixed standard deviation. It will depend on g. (We won’t go into strategies for choos-
ing g, but the paper describes it nicely.)

3 Mixture models

4. Consider a simple mixture model involving two spherical Gaussians in two dimensions. So
x ∈ R2 and

P(x|θ) =

2∑
z=1

P(z|θ)P(x|z, θ) =
2∑

z=1

pzN(x;µz,σ2
zI)

We will initialize the parameters of this mixture model as follows

p1 = p2 = 0.5, µ1 = µ2, σ2
2 = 2σ2

1

The initialization is also shown graphically in Figure 1 (top middle). The circles are drawn
exactly one standard deviation (e.g., σ1) away from the corresponding mean (e.g., µ1). The
larger dashed circle corresponds to the second component with larger variance.

MIT 6.790 Fall 2024 5

Given the initialization above, which one of the figures a-d) of Figure 1 represents the mixture
model that we get after one EM-iteration? Briefly justify your answer.

a) −2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

a) −2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

a) −2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

b) −2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

c) −2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

d) −2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

Figure 1: Top left) observed data; top right) initial mixture model; a-d) candidate mixture models
resulting from one EM update.

5. Suppose we have a k-component mixture of spherical Gaussians model. Which of the follow-
ing initializations of mixing proportions, means, and variances have a chance of recovering
the underlying clusters assuming our assumption about the model family is correct? If the
initialization is likely to fail, describe how. We use a shorthand [k] = {1, . . . ,k}.

1. pj = 1/k, j ∈ [k]; µj = µ0, j ∈ [k], for some common µ0; σj = σ0, j ∈ [k], for some
common σ0.

2. pj = 1/k, j ∈ [k]; µj = µ0, j ∈ [k], for some common µ0; σj, j ∈ [k], are set to different
values

3. pj = 1/k, j ∈ [k]; µj, j ∈ [k], are set to randomly chosen data points; σj = σ0, j ∈ [k], for
some common σ0.

4. pj, j ∈ [k] are randomized; µj = µ0, j ∈ [k], for some common µ0; σj = σ0, j ∈ [k], for
some common σ0.

6. In this question and the next we revisit the ELBO introduced in Section 2, and show how it
can be also used to view the EM algorithm for estimating a mixture of k spherical Gaussians
model.

Let D = {xi}i=1,...,n be our observed data where xi ∈ Rd. Given any choice of distribu-
tions Q(z|xi), provide explicit parameter estimates of the mixture model as a function of these

MIT 6.790 Fall 2024 6

choices (M-step). In other words, solve θ̂ = arg maxθ ELBO(Q; θ) where

ELBO(Q; θ) =
n∑

i=1

{
k∑

z=1

Q(z|xi) log
[
pzN(xi;µz,σ2

zI)
]
+H(Qz|xi)

}

7. Recall that we can equivalently write the ELBO estimation criterion as

ELBO(Q; θ) =
n∑

i=1

{
logP(xi|θ) − KL(Qz|xi∥Pz|xi,θ)

}
Show that when Q(z|xi) = P(z|xi, θ0) for all z ∈ [k] and i = 1, . . . ,n, then

∇θ KL(Qz|xi∥Pz|xi,θ)
∣∣
θ=θ0

= 0 (vector)

for all i = 1, . . . ,n. This result ensures that ∇θELBO(Q; θ)|θ=θ0 = ∇θ

∑n
i=1 logP(xi|θ)|θ=θ0

after each E-step. In other words, the lower bound criterion not only agrees in value at θ = θ0

but it also has the same derivative as the log-likelihood.

4 Diffusion models

8. Let’s consider a simple diffusion model in 2D. In other words, we are generating samples
x ∈ R2. The dataset available to us consists of only two points, [1, 0]T and [0, 1]T .

(a) Let βt, t = 1, 2, . . . , T refer to the noise variance we add at step t. In other words, at step
t in the forward process we update the example according to xt =

√
1 − βtxt−1 +

√
βtϵt,

where ϵt ∼ N(0, I). Let αt = 1 − βt and ᾱt =
∏t

s=1 αs. What is the resulting forward
model distribution at step t conditioned on x0? Hint: you can start by writing x2 as a
linear combination of x0 and Gaussian noise ϵ ∼ N(0, I) and note I is the identity 2d
matrix.

(b) Since the forward process is applied the same to each example in our dataset, we can ask
what the distribution is over xt marginally across the examples. Write down an expression
for this distribution. You can assume that the examples are selected with equal probability,
i.e., q(x0) = 1/2 for x0 = [1, 0]T or x0 = [0, 1]T .

(c) Suppose we use a simple estimation criterion for our reverse process, i.e., we find ϵθ(xt, t)
that minimizes

Ex0,t,ϵ
{
∥ϵ− ϵθ(xt(x0, ϵ), t)∥2}

where xt(x0, ϵ) =
√
ᾱtx0 +

√
1 − ᾱtϵ and x0 ∼ q(x0), ϵ ∼ N(0, I). Consider a fixed x̂.

What is the resulting optimal estimate for ϵθ(x̂, t) if our reverse model can be arbitrarily
complex? Write down the solution as an expression involving ϵ, xt(x0, ϵ) and x̂.

(d) To evaluate your answer to the previous question note that you can think of the problem
in terms of a graphical model x0 → xt, ϵ → xt where we know the marginal distributions
over x0 and ϵ and how they give rise to xt through xt(x0, ϵ). We observe xt = x̂ and wish
to calculate the resulting posterior over ϵ. What is this posterior?

(e) Briefly describe how the optimal answer for the reverse process, i.e., our estimate ϵθ(x̂, t)
for a fixed x̂, behaves as t becomes very large.

MIT 6.790 Fall 2024 7

5 Flow Matching

9. This question is based on lecture 23; for more background see Yaron Lipman, Ricky T.Q. Chen,
Heli Ben-Hamu, Maximilian Nickel, and Matt Le, "Flow Matching for Generative Modeling."

Given sample space Rd we can use a continuous probability "flow" to represent a target dis-
tribution p1(x), by learning an invertible transformation from some simple known distribution
p0(x). We will use this method to model a data distribution q(x) ∼ Unif({x(1), . . . , x(n)}).

(a) A probability flow is continuous time-indexed function, such that for all t ∈ [0, 1], pt is a
pdf over Rd. We are going to think about the probability flow1 induced by fixing p0 and
p1, then defining a distribution of linear paths

x0 ∼ p0(x)

x1 ∼ p1(x)

xt = (1 − t)x0 + tx1

We’ll start by considering the case of a fixed x1. If x0 ∼ N(0, I), what is the distribution
pt(xt | x1) such that xt ∼ pt?

(b) What is pt(x | x1) as t → 1?

(c) Now, more generally, if x1 ∼ p1(x) what is pt(x)?

(d) The whole reason we’re trying to find alternative ways of thinking about learning p1 is
that complicated densities are hard to represent and learn directly. An alternative pa-
rameterization of the whole probability flow pt is in terms of a time varying vector field
dxt/dt = vt(xt), that intuitively has the property that if we start with p0, and let the
probability “flow” as specified by this vector field, the distributions pt will match the ones
we desire and, in particular, will converge to p1 as t → 1.
The continuity equation from fluid flow tells us the relationship between this velocity field
and the probability flow:

d

dt
pt(x) = −∇x · (pt(x)vt(x))

In one dimension, for intuition, this is simply2

d

dt
pt(x) = −

d

dx
pt(x)vt(x)

So now. We know what we want our probability flow to be: pt. What is the vt that will
result in our desired pt?

vt(x) =

∫
x1

x1 − x

1 − t
p(x1 | x, t)dx1

Explain intuitively why this makes sense.

(e) What is p(x1 | x, t)?

1This is called a probability path in the paper.
2You may have forgotten the notation but ∇x· is the divergence operator. Go look it up.

https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2210.02747

MIT 6.790 Fall 2024 8

(f) Show that our definitions of vt(x) and pt(x) satisfy the continuity equation, in 1D, and
assuming x0 ∼ N(0, 1).
It’s kind of tedious to do by hand (and Mathematica can do it!) so fine to use the fact that
for a fixed x1,

d

dt
pt(x | x1) = −

d

dx
(pt(x | x1)vt(x | x1))

d

dt
N(tx1, (1 − t)2) = −

d

dx
N(tx1, (1 − t)2)

x1 − x

1 − t

(g) Whew! The key takeaway here was that we showed letting the velocities be

vt(x) =

∫
x1

x1 − x

1 − t
pt(x1 | x)dx1

would yield the right probability flow.
Use this insight to describe a stochastic gradient descent training procedure for learning
a neural-network approximation vθ(x, t)t to vt from dataset D = {x(1), . . . , x(n)}.

(h) Finally, once we have trained vθ(xt, t), how do we sample from p̂1?

	Generative model warmup
	VAE
	Mixture models
	Diffusion models
	Flow Matching

