
6.790 Homework 6 Solutions

Please hand in your work via Gradescope via the link at https://gradml.mit.edu/info/homeworks/.
If you were not added to the course automatically, please use Entry Code R7RGGX to add yourself
to Gradescope. Make sure to assign the problems to the corresponding pages in your solution when
submitting via Gradescope.

1. Latex is not required, but if you are hand-writing your solutions, please write clearly and
carefully. You should include enough work to show how you derived your answers, but you
don’t have to give careful proofs.

2. Homework is due on Thursday November 21 at 11PM.

3. Lateness and extension policies are described at https://gradml.mit.edu/info/class_policy/.
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Solution: Don’t look at the solutions until you have tried your absolute hardest to solve the
problems. This is especially true for optional problems that you didn’t work on—it’s a good
idea to come back to them when studying for exams.

1 Need a smoothie?

1. Your friend David just learned a new technique called Gaussian process and he’s trying to
generate some 1D examples to build some intuition on the different covariance functions for
a zero-mean Gaussian process prior. Unfortunately he accidentally spilled a smoothie over
his laptop lost the code he used to generate the plots. Conveniently he has printed out some
plots for different covariance functions earlier and roughly remembers what kind of functions
he used to generate these plots. As a good friend who excelled in 6.7900, you are trying to
comfort him by labeling the plots.

(a) The following plots contain random functions drawn from a covariance function with
a squared exponential kernel k(x, z) = exp

(
− 1

2τ2 ∥x− z∥2
)

with different values of τ.
Indicate which one of them corresponds to:

i. τ = 0.5
ii. τ = 3

iii. τ → inf

Solution: (A): τ → inf. (B) τ = 0.5. (C) τ = 3.
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(b) Qualitatively describe what your random function would look like if you draw with a
squared exponential kernel when τ → 0.

Solution: Function values drawn across the X axis would be marginally independent
of each other regardless of how close they are in X.

(c) In addition to the squared exponential kernel k(x, z) = exp
(
− 1

2τ2 ∥x− z∥2
)
, David has

also tried an exponential kernel in the form of k(x, z) = exp
(
−

∥x−z∥
τ

)
. He has tried two
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values for τ for both kernels and the values are τ = 3 and τ = 0.5. For each of the plots
below, indicate which kernel function it is generated with which τ value.

Solution: (A): Exponential kernel with τ = 3. (B): Squared exponential kernel with
τ = 0.5. (C): Exponential kernel with τ = 0.5. (D): Squared exponential kernel with
τ = 3.
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2 Calculation with squared exponential kernel

2. Consider a Gaussian process with E[f(x)] = 0, and a squared exponential kernel of the form

k(x, z) = σ2
f exp

(
−||x− z||2

2l2

)
,

where l is the characteristic length scale and σf is the signal standard deviation. Assume we
get observations of y values with noise variance σ2

N.

Let l2 = 0.5, σ2
f = 5, σ2

N = 0.01. Assume you have been given observations ((1, 1), (2,−1))
(these are points in (x,y) space). What is the mean and variance of the prediction at a new
query point x∗ = 1.5? Write down the solution in terms matrices and vectors, you don’t need
to hand-calculate the final numerical results1

Solution: For our training data, we can construct the covariance matrix K(x, x) as

K(x, x) =
[

5 5e−1

5e−1 5

]

We can also construct the covariance vector for our new query point x∗ with respect to the
training data

K(x∗, x) =
[
5e−0.25, 5e−0.25]

1If you are trying to refer to parameter estimate formula from the textbook "Gaussian Processes for Machine Learning",
notice that in eq. (2.21), the predictive distribution is derived with respect to f∗, in order to derive the predictive
distribution for y∗, you need to add σ2

nI to the lower right block of the covariance matrix. This would also impact
subsequent equations such as eq. (2.24).
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Our posterior predictive mean is

µ∗ = K(x∗, x)
(
K(x, x) + σ2

NI
)−1

y =
[
5e−0.25, 5e−0.25] [5 + 0.01 5e−1

5e−1 5 + 0.01

]−1

[1,−1]⊤ = 0

Our posterior predictive variance is

σ2
∗ = K(x∗, x∗) + σ2

NI− K(x∗, x)
(
K(x, x) + σ2

NI
)−1

K(x, x∗)

= 5 + 0.01 −
[
5e−0.25, 5e−0.25] [5 + 0.01 5e−1

5e−1 5 + 0.01

]−1 [
5e−0.25, 5e−0.25]⊤ = 0.5824

(1)

3 Covariance or not?

3. Recall that for a Gaussian process model the predictive distribution of the response y∗ in a test
case with inputs x∗ has mean and variance given by

E[y∗|x∗,D] = kTC−1y

Var[y∗|x∗,D] = v− kTC−1k,

where y is the vector of observed responses in training cases, C is the matrix of covariances for
the responses in training cases, k is the vector of covariances of the response in the test case
with the responses in training cases, and v is the prior (co)variance of the response in the test
case, and D is the training data.

(a) Suppose we have just one training case, with x1 = 3 and y1 = 4. Suppose also that the
noise-free covariance function is K(x, x ′) = 2−|x−x ′|, and the variance of the noise is 1

2 .
Find the mean and variance of the predictive distribution for the response in a test case
for which the value of the input is 5.

Solution: The equations given above doesn’t take into account of the noise of our
measurement, if we add in the noise term σ2, the mean and variance for a new input
x∗ would be

E[y∗|x∗,D] = kT (C+ σ2)−1y

Var[y∗|x∗,D] = v+ σ2 − kT (C+ σ2)−1k

Therefore, the mean of the predictive distribution is

K(3, 5) ·
(
K(3, 3) +

1
2

)−1

· 4 =
1
4
·
(

1 +
1
2

)−1

· 4 =
2
3
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The variance of the predictive distribution is(
K(5, 5) +

1
2

)
− K(3, 5)

(
K(3, 3) +

1
2

)−1

K(3, 5)

=

(
1 +

1
2

)
−

(
1
4

)(
1 +

1
2

)−1 (1
4

)
=

35
24

(b) Repeat the calculations, but using K(x, x ′) = 2+|x−x ′|. What can you conclude from the
result of this calculation?

Solution:
The mean of the predictive distribution is

K(3, 5) ·
(
K(3, 3) +

1
2

)−1

· 4 = 4 ·
(

1 +
1
2

)−1

· 4 =
32
3

The variance of the predictive distribution is(
K(5, 5) +

1
2

)
−K(3, 5)·

(
K(3, 3) +

1
2

)−1

·K(3, 5) =
(

1 +
1
2

)
−4·

(
1 +

1
2

)−1

· 1
4
= −

55
6

Notice that the variance in this case is a negative number, which is clearly wrong. We
can therefore conclude that K(x, x ′) = 2+|x−x ′| is not a valid covariance function – it
is not positive semi-definite.

4 Mixed-up mixture

4. Here we are estimating a mixture of two Gaussians via the EM algorithm. The mixture distri-
bution over x is given by

P(x; θ) = P(1)N(x;µ1,σ2
1) + P(2)N(x;µ2,σ2

2)

Any student in this class could solve this estimation problem easily. Well, one student, de-
vious as they were, scrambled the order of figures illustrating EM updates. They may have
also slipped in a figure that does not belong. Your task is to extract the figures of successive
updates and explain why your ordering makes sense from the point of view of how the EM
algorithm works. All the figures plot P(1)N(x;µ1,σ2

1) as a function of x with a solid line and
P(2)N(x;µ2,σ2

2) with a dashed line. The sampled data points are given along the x axis in the
figures at x = 0, 1, 2, 5, 6, 7 and are denoted by the cross marks on the x axis.

(a) (True/False) In the mixture model, we can identify the most likely T posterior assign-
ment, i.e., j that maximizes P(j | x), by comparing the values of P(1)N(x;µ1,σ2

1) and
P(2)N(x;µ2,σ2

2)
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Solution: True

(b) Assign two figures to the correct steps in the EM algorithm.
- Step 0: ( ) initial mixture distribution
- Step 1: ( ) after one EM-iteration

Solution: - Step 0: a
- Step 1: c

(c) Briefly explain how the mixture you chose for “step 1” follows from the mixture you have
in “step 0”.

Solution: The two points on the left will be assigned more to the second (red) Gaus-
sian since P(1)N(x;µ1,σ2

1) < P(2)N(x;µ2,σ2
2) for those points. The points on the right,

except for the very last one, will be assigned mostly to the first (blue) Gaussian. As
a result, the first Gaussian will become more concentrated around the two points on
the right, while the second (red) Gaussian will move to the left and will have a higher
variance as, in the M-step, it is estimated essentially on the basis of the spread out
points x = 0, x = 1, and x = 7.
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5 More mixture

5. We estimated a two Gaussians mixture model based on two-dimensional data shown in the
figure below. The mixture was initialized randomly in two different ways and run for three
iterations based on each initialization. However, the figures got mixed up (yes, again!). Please
draw an arrow from one figure to another to indicate how they follow from each other (you
should draw only four arrows). The ellipses represent the 1 standard deviation equi-probability
contours of the Gaussians. The small circles represent the sampled data points.

ways and run for three iterations based on each initialization. However, the figures
got mixed up (yes, again!). Please draw an arrow from one figure to another to
indicate how they follow from each other (you should draw only four arrows).
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Figure 3.1: mixture model with EM, two initializations, three iterations for eac h

3.2 (3 points) We also wanted to try another two models based on the same n observa-
tions as in 3.1:

Model 1 P (x; ✓) = N(x; µ,⌃)

Model 2 P (x; ✓0) = P (1)N(x; µ1,�
2 · I) + P (2)N(x; µ2,�

2 · I)

4

Solution:
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Problem 3

3.1 (6 points) We estimated a mixture of two Gaussians model based on two dimensional
data shown in figure 3.1 below. The mixture was initialized randomly in two di↵erent
ways and run for three iterations based on each initialization. However, the figures
got mixed up (yes, again!). Please draw an arrow from one figure to another to
indicate how they follow from each other (you should draw only four arrows).

Figure 3.1: mixture model with EM, two initializations, three iterations for each

4

6 Missing data

6. We’ll start with a very simple problem, in which single attribute of a single data set is missing.
There are two attributes, A and B, and this is our data set, D:

i A B

1 1 1

2 1 1

3 0 0

4 0 0

5 0 0

6 0 H ***missing **

7 0 1

8 1 0

Assume the data is missing completely at random (MCAR): that is, that the fact that it is missing
is independent of its value.

Our goal is to estimate Pr(A,B) from this data. We’d really like to find the maximum-likelihood
parameter values, if we can. The likelihood is

L(θ) = log Pr(D; θ) = log (Pr(D,H = 0; θ) + Pr(D,H = 1; θ)) .
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(a) Kim is lazy and decides to ignore x(6) all together, and estimate the parameters:

θ̂1 =

(
P(A = 0,B = 0) P(A = 0,B = 1)
P(A = 1,B = 0) P(A = 1,B = 1)

)
=

(
3/7 1/7
1/7 2/7

)
=

(
.429 .143
.143 .285

)
What is L(θ̂1)?

Solution: If we do that, then

L(θ̂1) = log

Pr(00 ; θ̂1)
∏
i ̸=6

Pr(xi ; θ̂1) + Pr(01 ; θ̂1)
∏
i ̸=6

Pr(xi ; θ̂1)


= 3 log 0.429 + 2 log 0.143 + 2 log 0.285 + log(0.429 + 0.143)

= −9.498

(b) Jan thinks we should let H be the ’best’ value it could have, that is to make the log
likelihood as large as possible, and so tries setting H = 0 and then H = 1 and computes the
log likelihood of the complete data in both cases. What value gives the highest complete-
data log likelihood? What is the likelihood value?

Solution: That value is 0. So, then we’d have

θ̂2 =

(
.5 .125

.125 .25

)
and

L(θ̂2) = −9.481 .

That’s a little better!

(c) Evelyn thinks this is all unprincipled messing around and says we should optimize the
thing we want to optimize! That is,

θ̂ = arg max
θ

L(θ) .

Evelyn also thinks we can just use the code for gradient descent that we already built in
6.7900 to do this job.
Is Evelyn right?

Solution: Evelyn is absolutely right about (if at all possible!) optimizing the thing we
want to optimize.
We can do this with gradient methods, but it gets tricky because of constraint that θ̂ be
a valid probability distribution; that constraint is not maintained by our basic gradient
descent code. So, we’d have to investigate constrained optimization algorithsm, or try
to formulate the problem using Lagrange multipliers.
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(d) Ariel was paying close attention in lecture and thinks this problem is an example of esti-
mation in the presence of a latent variable and that we should use EM.
Let’s start with the guess

θ0 =

(
.25 .25
.25 .25

)
What is the formula for the E step in this problem? What is the numerical result in this
particular case?

Solution:

P̃(H = 1) = Pr(H = 1 | D ; θ0) = Pr(H = 1 | x(6) ; θ0) = Pr(B = 1 | A = 0 ; θ0) = 0.5

(e) Ariel’s roommate Angel joins in the EM game and computes the M step, to get θ1. What
is the numerical value in this case, and why?

Solution:

θ1 = arg max
θ

(0.5 log Pr(D,H = 0 ; θ) + 0.5 log Pr(D,H = 1 ; θ))

=

(
7/16 3/16
2/16 4/16

)

This step is not immediately obvious: to derive it, we need to take the derivative with
respect to each of the parameters, set to 0, and solve for θ. We find that we can treat
the estimation problem as one in which we have a data item for each possible value
of H, weighted by the probability that H has that value. We get such a decomposi-
tion because, for each particular value of H, only one of the parameter estimates is
affected.
We get the same result by doing estimation as usual, but treating Pr(H) as giving us
fractional counts on both data cases:
i A B count = P~(H)

1 1 1

2 1 1

3 0 0

4 0 0

5 0 0

6a 0 0 0.5

6b 0 1 0.5

7 0 1

8 1 0

On subsequent EM iterations, we have L(θ) = −10.39,−9.47,−9.4524,−9.4514, . . ..

(f) Will EM always find a solution that maximizes L?
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Solution: No. It will converge monotonically to a local optimum but it may not be a
global optimum, and will depend, in general, on your initial guess.

7 Gradient descent for Gaussian mixture

7. It is typical to fit a Gaussian mixture model to data using EM (expectation maximization) but
we can also use gradient descent!

Assume we have a latent discrete variable Z with values in {1, . . . ,K} and an observable contin-
uous variable X with values in Rd.

The likelihood of the data, as a function of the parameters, is

L(π,µ,Σ) =
n∏

i=1

K∑
k=1

πk logN(x(i) ; µk,Σk)

Assuming we know K, we would like to find π, µ, and Σ to maximize this quantity.

(a) The first problem we face is that our parameters are constrained to be in a limited space:
the π have to constitute a probability distribution (be in the range [0, 1]) and the σ have
to be valid covariance matrices (positive definite). For simplicity, let’s assume that

Σj = Iσ2
j

for σj > 0 (that is, that the covariances are round).
What is a different parameterization for π and the σj values so that we can do uncon-
strained gradient descent on them?

Solution: Let

πj =
exp(aj)∑k
j=1 exp(aj)

and let
σj = exp(bj)

Now we can just optimize the aj’s and bj’s and µ’s.

(b) Now, let’s look at a very simple version of this problem, with a single data point in 1D,
with two components. We get

L(π1,π2,µ1,µ2,σ1,σ2) = π1N(x ; µ1,σ1) + π2N(x ; µ2,σ2)

We find that

∂L

∂µ1
= π1(x− µ1)

exp(− (x−µ1)
2

2σ2
1

)
√

2πσ3
1
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∂L

∂µ1
= π1 ·

(x− µ1)

σ2
1

·N(x ; µ1,σ1)

and, of course, get a symmetric result for ∂L/∂µ2.
i. For a training example x, if we do one SGD update, in what directions will µ1 and µ2

move?

Solution: µ1 and µ2 will move in the direction of x.

ii. What governs which µ parameter will be changed the most?

Solution: The magnitude of change is governed by the likelihood of being as-
signed to each component divided by the standrad deviation. We compare which
one is larger to determine which µ will be changed the most.

(c) Staying with the simple 1D 2-component version, letting π1 = exp(a1)/(exp(a1)+exp(a2)),
we find that

∂L

∂a1
=

exp(a1 + a2)

(exp(a1) + exp(a2))2

(
N(x ; µ1,σ1) −N(x ; µ2,σ2)

)
and get a symmetric result for ∂L/∂a2. Let’s assume that given the current parameters,
x is much more likely given µ1,σ1 than given µ2,σ2. In one SGD update with input x,
describe how π1 and π2 would be changed.

Solution: In the expression for a1, the difference in PDFs is positive, so a1 would
increase. a2 would symmetrically decrease, so we move π1 up and π2 down.

(d) Finally, in this same problem, but letting σ1 = exp(b1), we find that

∂L

∂b1
= π1N(x ; µ1, exp(b1))

(
(µ1 − x)2

exp(2b1)
− 1

)
and get a symmetric result for ∂L/∂b2 In one SGD update with input x, describe how σ1

and σ2 would be changed.

Solution: All terms in the expression are positive except for
(

(µ1−x)2

exp(2b1)
− 1

)
. This is

positive if (µ1−x)2

exp(2b1)
=

(µ1−x)2

σ2
1

> 1. So if x1 is more than 1 standard deviation from µ1,

σ1 will increase, otherwise it will decrease. A symmetric argument holds for σ2.

8 Principles of principal components

8. Principal components are related to several other ideas we have come across in class so far.
We’ll explore this in two dimensions. Imagine we have a data set D = {(x

(i)
1 , x(i)2 )}ni=1.
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(a) In homework 0, we observed that the eigenvectors of the covariance matrix of a multi-
dimensional Gaussian corresponded to axes of ellipses describing equi-probability con-
tours.
Show that the eigenvector of the covariance matrix with the largest corresponding eigen-
value is equivalent to the first “principal” component of the data.

Solution: Let the first principal component be the vector v. The definition of first
principal component is

v = arg max
||v||=1

n∑
i=1

(xi · v)2

=⇒ v = arg max
||v||=1

vTXTXv.

This is precisely the definition of the eigenvector corresponding to the largest eigen-
value of XTX, the covariance matrix.

(b) One way to describe the first principal component is that it is the line such that the sum
of the perpendicular distances of the points to the line is minimized. This sounds sort of
like what’s happening in ordinary least squares. Explain why they are different and draw
a picture of a small data-set (4 points) in which the solutions are substantially different.

Solution: In ordinary least squares, we are trying to minimize the sum of the squared
vertical distances of the points to the line. In principal components, we are trying to
minimize the sum of the squared perpendicular distances of the points to the line.

Cconsider the data set {(0, 0), (0, 1), (1, 0), (1, 1)}. The line that minimizes the sum of
the squared vertical distances is the line y = x. A line that minimizes the sum of the
squared perpendicular distances is the line y = 1 − x.
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