
6.790 Homework 5
Revision: 11/2/24 7:00PM

Solutions

Please hand in your work via Gradescope via the link at https://gradml.mit.edu/info/homeworks/.
If you were not added to the course automatically, please use Entry Code R7RGGX to add yourself
to Gradescope. Make sure to assign the problems to the corresponding pages in your solution when
submitting via Gradescope.

1. Latex is not required, but if you are hand-writing your solutions, please write clearly and
carefully. You should include enough work to show how you derived your answers, but you
don’t have to give careful proofs.

2. Homework is due on Tuesday November 12 at 11PM.

3. Lateness and extension policies are described at https://gradml.mit.edu/info/class_policy/.
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Solution: Don’t look at the solutions until you have tried your absolute hardest to solve the
problems. This is especially true for optional problems that you didn’t work on—it’s a good
idea to come back to them when studying for exams.

Robust Binary Classification (30 points)

1. In this problem will study robust binary classification. For any input x ∈ Rd, the hypothesis
function is

hθ(x) = wTx+ b, where θ = {w ∈ Rd,b ∈ R}.

The class label y ∈ {+1,−1}. The prediction probability of class +1 is given as

p(y = +1|x, θ) =
1

1 + exp(−hθ(x))

and p(y = +1|x, θ) = 1 − p(y = −1|x, θ).

We will use the following loss function:

ℓ(hθ(x),y) = − logP(y|x, θ) = log
(
1 + exp(−yhθ(x))

)
(a) (5 points) The loss ℓ(hθ(x),y) can be written as L(z) = log(1 + exp(−z)), where z =

yhθ(x). What can we say about the monotonicity of L(z) with respect to z?

Solution: The loss L(z) is monotonically decreasing.

The robust binary classification problem can now be defined as:

min
θ

max
δ:||δ||⩽ϵ

ℓ(hθ(x+ δ),y) (1)

where || · || denotes a valid norm.
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To understand how this formulation works, we need an intermediate step of understand-
ing so called dual norms. They are defined as

∥θ∥∗ = max
∥δ∥⩽1

δTθ (2)

where, for example, ∥ · ∥ could be the 2-norm ∥δ∥2 = (
∑d

j=1 δ
2
j)

1/2 or the ℓ-infinity norm
∥δ∥∞ = maxdj=1 |δj|. As a warm-up exercise, let’s solve what the corresponding dual norms
are.

(b) (5 points) Find what norms the dual norms ∥θ∥∗ = max∥δ∥2⩽1 δ
Tθ and ∥θ∥∗ = max∥δ∥∞⩽1 δ

Tθ

are.

Solution:
By Cauchy-Schwarz, we have that δTθ ⩽ ∥δ∥2∥θ∥2 = ∥θ∥2, where equality is achieved
when δ and θ are parallel. Thus, the dual norm of the 2-norm is just the 2-norm.
Also, we note that

max
∥δ∥∞⩽1

δTθ = max
∥δ∥∞⩽1

d∑
j=1

δjθj.

Since δjθj ⩽ |θj| when |δj| ⩽ 1, with equality occurring at δj = sgn(θj), the expression
simplifies to

max
∥δ∥∞⩽1

d∑
j=1

δjθj =

d∑
j=1

|θj|,

so the dual of the ℓ-infinity norm is just the 1-norm.

(c) (5 points) The inner maximization problem in (3) i.e. max
δ:||δ||⩽ϵ

L(yhθ(x + δ)), using L(·)

can be written as:
max

δ:||δ||⩽ϵ
L(y(wT (x+ δ) + b))

Find the closed form solution of this inner maximization problem when:
1) || · || is ∞− norm.
2) || · || is 2 − norm.
Hint: [Use the previous parts]

Solution:
Note that in L(y(wT (x+ δ) + b)), the quantity y(wT (x+ δ) + b) is a scalar. As L(z) is
monotonically decreasing,

max
δ:||δ||⩽ϵ

L(y(wT (x+ δ) + b)) = L

(
min

δ:||δ||⩽ϵ
y(wT (x+ δ) + b)

)
We therefore need to solve

min
δ:||δ||⩽ϵ

y(wT (x+ δ) + b)
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This can be simplified as

min
δ:||δ||⩽ϵ

y(wTx+ b) + ywTδ

Using the result from previous part we can write: if || · || is ∞− norm, then

min
δ:||δ||⩽ϵ

y(wTx+ b) + ywTδ = y(wTx+ b) − ϵ||yw||1 = y(wTx+ b) − ϵ||w||1

if || · || is 2 − norm, then

min
δ:||δ||⩽ϵ

y(wTx+ b) + ywTδ = y(wTx+ b) − ϵ||yw||2 = y(wTx+ b) − ϵ||w||2

(d) (5 points) Using the solution from part c, provide the simplified min-max problem. Is this
problem same as solving the nominal classification problem with a regularizer term? If
yes, then explain why is this the case, and if not, then explain the differences.

Solution:
The original minimization problem

min
θ

max
δ:||δ||⩽ϵ

ℓ(hθ(x+ δ),y)

can now be written as : min
θ

L

(
y(wTx+b)−ϵ||w||1

)
or min

θ
L

(
y(wTx+b)−ϵ||w||2

)
.

This is not same as solving the nominal classification problem with a regularizer term
as here the penalty term is inside the loss function, indicating that the penalty term
plays a role only for those data-points which are close to the decision boundary.

We now consider a dataset of (x,y) pairs with d = 1:

D = {(−1,−1), (−1,−1), (−1,−1), (−1,−1), (−1,−1), (−1,−1),

(−1,−1), (−1,−1), (−1,−1), (−1,−1), (−1,−1), (−1,−1),

(−1,−1), (−1,−1), (−1,−1), (−1,−1), (−1,−1), (1,−1), (2, 1)} (3)

(e) (2 points) What parameter vector θ minimizes the regular logistic regression objective? If
more than one, explain. (You should do this without code).

Solution: Any pair of very large magnitude numbers (w,b) satisfying −2w < b <

−w < 0; the larger the magnitude, the lower the objective.

(f) (2 points) What parameter vector θ minimizes l2-regularized logistic regression with λ =

10−12 (i.e. adding λw2 to the objective)? (This question and the rest of the parts of this
question can be done using code.)
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Solution: [40.58,−60.87]

(g) (2 points) What class probability distribution does logistic regression with these parame-
ters assign to the point x = 1.51?

Solution: P(positive) = 0.60

(h) (2 points) What parameter vector minimizes the robust regression objective, if we want
to be correct even if the input is perturbed by ϵ = 0.48?

Solution: Any pair of very large magnitude numbers (w,b) satisfying −2w < b <

−w < 0; the larger the magnitude, the lower the objective.

(i) (2 points) What class probability distribution does logistic regression with these parame-
ters assign to the point x = 1.51?

Solution: P(positive) = 1

Learning Theory (10 points)

2. You work for Googolog and plan to train a lot of neural networks!

• You are going to try 10 different architectures

• Each with 10 different learning-rate schedules

• And measure the performance at 100 epochs (each) to avoid overtraining

You have a big pile of data. You’d like to use as much as possible for training, but you know you
need to save a held-out set for validation in order to pick the best architecture, learning-rate
schedule and number of training epochs.

You would like to be able to predict the risk on unseen points by computing the risk on the
validation set, and guarantee that, with probability > 0.99 it is within 0.01 of the true risk.
Suppose the risk on any point is bounded in [0, 1].

(a) (8 points) How big does your validation set need to be?

Solution: We would like to consider 10× 10× 100 = 10000 different hyperparameter
configurations. Denote the risk of a model f evaluated on a point x as R(x, f). Denote
the full set of models we evaluate as F.
We would like, with probability 0.99, for the following to hold:

max
f∈F

|Ex[R(x, f)] −
1
N

∑
i

R(x(i), f)| ⩽ 0.01 (4)
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where x(i) are validation set points and N is the number of validation set points.
Note that by the union bound, we can bound the probability of any model breaking
this inequality by the sum of the probabilities of each individual model breaking the
inequality:

P(max
f∈F

|Ex[R(x, f)] −
1
N

∑
i

R(x(i), f)| ⩾ 0.01)

⩽
∑
f

P(|Ex[R(x, f)] −
1
N

∑
i

R(x(i), f)| ⩾ 0.01) (5)

By Hoeffding’s inequality:

P(|Ex[R(x, f)] −
1
N

∑
i

R(x(i), f)| ⩾ 0.01) ⩽ 2e−2N(0.01)2
(6)

Applying the union bound:

P(max
f∈F

|Ex[R(x, f)] −
1
N

∑
i

R(x(i), f)| ⩾ 0.01) ⩽ 20000e−2N(0.01)2
(7)

Since we would like the left hand side to be less than 1 − 0.99 = 0.01, we must have:

0.01 = 20000e−2N(0.01)2
(8)

or
N ≈ 72543.2 (9)

Thus, 72544 points will suffice.

(b) (2 points) Your friend says that if you increase the training set size, you’ll be able to make
this bound tighter. Is your friend right or wrong? Explain.

Solution: In general, no. Increasing the size of the training set will prevent overfitting
to the training set, but it won’t prevent overfitting to the validation set. In order to
make the above bound on the validation set risk tighter, we would need to increase
the validation set size.

Causality (10 points)

3. One idea from learning causal models (which we may explore later in the class) is that the
relationships in the "causal" direction are more generally useful and transferrable, than the
other way around. So, for example, if we are interested in the relationship between a disease
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and its symptoms (which are caused by the disease), we might prefer to model

P(symptoms | disease) (10)

rather than
P(disease | symptoms) (11)

But, of course, we are usually called upon to predict the disease from the symptoms, and make
a classifier that produces P(disease | symptoms).

So, for example, if we trained a classifier for malaria based on data in a tropical country, we
might end up with Ptropical(malaria | symptoms).

(a) (8 points) It doesn’t seem good to use this same classifier in the US. If we know the
incidence of malaria in our tropical population is 1%, and the incidence in US is 0.001%,
how could we make use of our Ptropical(malaria | symptoms) at Mass General?

Solution: This is a case of distribution shift: specifically, label-shift only distribution
shift since P(malaria) is different between the US and the tropical region, but we may
expect P(symptoms | malaria) to be the same. In this case, we may make the following
adjustment (denoting malaria as M and symptoms as S):

PUS(M | S) =

PUS(M)
Ptropical(M)Ptropical(M | S)

PUS(M)
Ptropical(M)Ptropical(M | S) +

1−PUS(M)
1−Ptropical(M)(1 − Ptropical(M | S))

=
1

1000Ptropical(M | S)
1

1000Ptropical(M | S) + 105−1
105−103 (1 − Ptropical(M | S))

=
99Ptropical(M | S)

99999 − 99900Ptropical(M | S)
(12)

(b) (2 points) If a patient came in with symptoms that would, using the tropical model, made
us predict that they had malaria with probability 0.75, what prediction would this US-
adjusted model make?

Solution: That they had malaria with probability approximately .003.

Day-Night (15 points)

4. You are training your robot outside in the daylight and come up with a good classifier for
whether the terrain in front of it is grass. Now, you get data from night-time and everything
looks different! Luckily, there were some examples in your original training data with sub-
stantial shadows, and some gathered at dusk. Letting Dday = (xi,yi)

n
i=1 be the first, labeled

data set, and Dnight = (xi)
m
i=n+1 be the night-time data that you are going to have to make

predictions on, let’s explore using importance reweighting to address this problem.
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(a) (2 points) We need to begin by training a classifier. What training data would we use
(inputs and targets)?

Solution: We can use Dday, the only labeled data we have.

(b) (3 points) We would typically use logistic regression for this classifier. Would it work to
use a decision tree?

Solution: In general, no, because decision trees don’t output probabilities of each
class being correct but instead just output the predicted class itself. However, we
could use a decision tree if it output estimated probabilities at the leaves.

(c) (3 points) Given the trained classifier, explain what problem we need to solve next. Is
there a way of using the weights we learned on the daytime-only data to predict on night-
time data, or do we need to retrain? If not, how do we make predictions?

Solution: We can’t use the classifier trained on Dday directly since the distribution
over x is shifted at night (co-variate shift). We have to retrain.

(d) (5 points) Assuming we do retrain, explain a strategy for approximating the importance-
reweighted objective, while using a standard pre-existing logistic regression package.

Solution: We can duplicate the points x in Dday (by different amounts for each x)
until the distribution over x in the new Dday is close to the distribution of x in Dnight.
We can then retrain from this augmented data.

(e) (2 points) Now let’s consider a fake domain in which x ∈ R2, and we have

y = f(x1) if x2 = 1 (13)

y = g(x1) otherwise (14)

Furthermore, assume that our labeled data set D1 only has x values in which x2 = 1. Now
we have a new set of unlabeled examples, D2, which only has x values in which x2 = 0.
Explain what the importance re-weighting method would do in this case.

Solution: Importance re-weighting would not work in this case because there is no
overlap between the D1 and D2 sets. In other words, there is no way to obtain the
distribution of x generating D2 by re-weighting the points in D1.

Fairness (20 points)

5. Read the linked Zafar et al. paper, Sections 1–4: https://www.jmlr.org/papers/volume20/18-262/
18-262.pdf. It’s okay to skip parts about SVMs

In the following, we will focus on Overall Misclassification Rate (Equation 3.3)

https://www.jmlr.org/papers/volume20/18-262/18-262.pdf
https://www.jmlr.org/papers/volume20/18-262/18-262.pdf
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(a) (1 points) When is gθ(y, x) non-zero? (it’s defined after Equation 4.4)

Solution: This requires:
ydθ(x) < 0 (15)

In other words, the classifier is incorrect.

(b) (5 points) The paper says (just after Equation 4.4) “if a decision boundary satisfies Eq.
(3.3), then the (empirical) covariance defined above will be (approximately) zero (for a
sufficiently large training set).”
Write a formal version of this statement, prove it, and state any additional assumptions
that need to be made for this to hold.

Solution: Equation 3.3 says that the probability of misclassification is independent of
z:

P(gθ(y, x) < 0 | z = 1) = P(gθ(y, x) < 0 | z = 0) (16)

In other words, gθ(y, x) < 0 is independent of z.
Since gθ(y, x) is never positive:

E[gθ(y, x) | z] = P(gθ(y, x) < 0 | z)E[gθ(y, x) | gθ(y, x) < 0, z] (17)

We assume that the magnitude of misclassification is independent of z given that there
is a misclassification. Thus,

E[gθ(y, x) | z] = P(gθ(y, x) < 0)E[gθ(y, x) | gθ(y, x) < 0] = E[gθ(y, x)] (18)

is independent of z.
Next, the covariance between z and gθ(y, x) is:

Cov(z,gθ(y, x)) = E[(z− E[z])(gθ(y, x) − E[gθ(y, x)])]

= E[(z− E[z])gθ(y, x)]

= E[(z− E[z])gθ(y, x) | z = 1]P(z = 1) + E[(z− E[z])gθ(y, x) | z = 0]P(z = 0)

= E[(1 − P(z = 1))gθ(y, x) | z = 1]P(z = 1) − E[P(z = 1)gθ(y, x) | z = 0]P(z = 0)

= P(z = 0)P(z = 1)[E[gθ(y, x) | z = 1] − E[gθ(y, x) | z = 0]]

= 0

(c) (5 points) If we are using a classifier where the signed distance to decision boundary
dθ(x) =

θTx
||θ|| , what is a value of c in Equation 4.5 that allows a gap of ϵ in the error rate

between the two groups (z = 1 and z = 0)? Assume that the groups have equal pro-
portions. Also, assume that all misclassifications are exactly distance 1 from the decision
boundary (do not use any additional assumptions you made in part b).
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Solution: First, we assume without loss of generality that z = 1 has higher misclassi-
fication rate by ϵ:

P(y
θTx

|| θ ||
< 0 | z = 1) = P(y

θTx

|| θ ||
< 0 | z = 0) + ϵ (19)

Using the misclassification distance from the decision boundary:

E[min(0,y
θTx

|| θ ||
) | z] = −P(y

θTx

|| θ ||
< 0 | z) (20)

Applying the earlier equation:

E[min(0,y
θTx

|| θ ||
) | z = 1] = E[min(0,y

θTx

|| θ ||
) | z = 0] − 4ϵ (21)

Equation 4.5 bounds the covariance between z and gθ(y, x) to have maximum mag-
nitude c. In this case,

gθ(y, x) = min(0,y
θTx

|| θ ||
) (22)

The absolute value of the covariance between this and z is:

|E[(z− E[z])min(0,y
θTx

∥θ∥
)]| =

1
4
|E[min(0,y

θTx

∥θ∥
) | z = 1] − E[min(0,y

θTx

∥θ∥
) | z = 0]|

=
ϵ

4

Thus, c = ϵ
4 allows a gap of ϵ in error rate.

(d) (2 points) Why are there no z values in Equation 4.9?

Solution: The dependence on z is in the selection of datasets D−
i .

(e) (2 points) If we optimize Equation 4.13 to obtain classifier θ, will we need z values at
prediction time? Why would it be better if we did not?

Solution: No, we will not need z at prediction time; the prediction only depends on
x. Since our goal is to produce a fair classifier after training, if we have succeeded,
then we should not need to use z so that our predicted output does not unnecessarily
depend on z.

(f) (5 points) Suppose that after running extensive experiments, we find that if we train a
classifier on a population of n0 examples with z = 0 and n1 examples with z = 1, the
classification error rate (P(y ̸= ŷ)) on unseen points with z = 0 will be c

n0
and the error

rate on unseen points with z = 1 will be c
n1

. We know that the underlying data distribution
has z = 0 and z = 1 in equal proportion.
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Unfortunately, we have lost our labels for which points are in group z = 0 and z = 1.
Suppose we wish to guarantee (with probability 99%) our classifier will be fair on test
points up to some small error ϵ:

|P(y ̸= ŷ | z = 0) − P(y ̸= ŷ | z = 1)| ⩽ ϵ (23)

Suppose we draw a training set of n pairs (x,y) to train our classifier. We can show that in
order to guarantee the above property, the number of training points must scale as ϵ−p.
What is p?

Solution: Since the two groups z = 1 and z = 0 are in equal proportion, we can
expect on average that there will be n

2 points in each group. However, there will be
some variation in the exact number. Specifically,

Var(n1) =
∑
i

Var(1(z(i) = 1)) = O(n) (24)

where z(i) denotes the group of point i. Thus, we may expect n1 and n0 to be roughly
n
2 ± k

√
n for some constant k (with high probability).

This means that the error on group z = 1 is with high probability in:

[
c

n
2 + k

√
n

,
c

n
2 − k

√
n
] (25)

with the same bounds applying for z = 0. We would like the difference in error to be
on the order of ϵ:

c
n
2 − k

√
n
−

c
n
2 + k

√
n

= ϵ (26)

Simplifying,
2k

√
n

n2

4 − k2n
=

ϵ

c
(27)

Assuming n is large, we may approximate:

2k
√
n

n2

4

=
ϵ

c
(28)

Thus,
n− 3

2 =
ϵ

8kc
(29)

or
n = O(ϵ−

2
3 ) (30)

p = 2
3 .


