
6.790 Homework 4
Revision: 10/21/24 11:00PM Solutions

Questions 1 and 2 are optional. The remaining problems are required. All the questions are
written (don’t include running code) and go over online learning, inner workings of neural network
architectures, and robustness. There are some hints in the blue boxes that are supposed to help
you in your solution, but you can choose to disregard them.

Please hand in your work via Gradescope via the link at https://gradml.mit.edu/info/homeworks/.
If you were not added to the course automatically, please use Entry Code R7RGGX to add yourself
to Gradescope. Make sure to assign the problems to the corresponding pages in your solution when
submitting via Gradescope.

1. Latex is not required, but if you are hand-writing your solutions, please write clearly and
carefully. You should include enough work to show how you derived your answers, but you
don’t have to give careful proofs.

2. Homework is due on Tuesday November 5 at 11PM.

3. Lateness and extension policies are described at https://gradml.mit.edu/info/class_policy/.

Contents

1 ReLU Backpropagation [optional] 2
1.1 Single output network . 2
1.2 Multiple output network . 5

2 Noisy Targets [10 points] 6

3 Architecture Details [10 pts] 7
3.1 Activations . 7
3.2 Convolutional Neural Networks . 7
3.3 Transformers . 7
3.4 Graph Neural Networks . 8

4 Online Logistic Regression [10 points] 8

5 Adversarial Example [10 points] 11

1

MIT 6.790 Fall 2024 2

Solution: Don’t look at the solutions until you have tried your absolute hardest to solve the
problems. This is especially true for optional problems that you didn’t work on—it’s a good
idea to come back to them when studying for exams.

1 ReLU Backpropagation [optional]

1.1 Single output network

1. The rectified linear unit (ReLU) is a popular activation function for hidden layers. The activa-
tion function is a ramp function f(z) = max(0, z) where z = wx. This has the effect of simply
thresholding its input at zero. Unlike the sigmoid, it does not saturate near 1 and is also sim-
pler in gradient computations, resulting in faster convergence of SGD. Furthermore, ReLUs can
allow networks to find sparse representations, due to their thresholding characteristic, whereas
sigmoids will always generate non-zero values. However, ReLUs can have zero gradient when
the activation is negative, blocking the backpropagation of gradients.

Here you use a very small neural network: it has one input unit, taking in a value x, one hidden
unit (ReLU), and one output unit (sigmoid). We include a bias term of +0.2 on the sigmoid
unit (the figure mistakenly shows a -0.2 bias).

We use the following quantities in this problem:

z1 = w1x

a1 = ReLU(z1)

z2 = w2a1 + 0.2

y = σ(z2)

The weights are initially w1 = 1
10 and w2 = −1.

Let’s consider one training example. For that training case, the input value is x = 2 (as shown
in the diagram), and the target output value t = 1. We’re using the following loss function:

E =
1
2
(y− t)2

MIT 6.790 Fall 2024 3

Please supply numeric answers; the numbers in this question have been constructed in such
a way that you don’t need a calculator. Show your work in case of mis-calculation in earlier
steps.

(a) What is the output of the hidden unit for this input?

Solution:
a = ReLU(z1) = max(0,w1x) = max(0,

1
10
× 2) =

1
5

(b) What is the output of the output unit for this input?

Solution:
y = σ(w2max(0,w1x)) = σ(−1× 1

5
+ 0.2) = σ(0) =

1
2

(c) What is the loss, for this training example?

Solution:
E =

1
2
(y− t)2 =

1
2
(
1
2
− 1)2 = 1/8

(d) Write out an abstract symbolic expression for derivative of the loss with respect to w1 as
repeated applications of the chain rule. For example, for the derivative of the loss with
respect to w2, we would write ∂E

∂w2
= ∂E

∂y
∂y
∂z2

∂z2
∂w2

.

Solution: ∂E
∂w1

= ∂E
∂y

∂y
∂z2

∂z2
∂a

∂a
∂z1

∂z1
∂w1

(e) Write the expression for each partial derivative in the chain rule expansion from the pre-
vious part. For example, ∂y

∂z2
= y(1 − y).

Solution: ∂E
∂y = y− t

∂y
∂z2

= y(1 − y)

∂z2
∂a = w2

∂a
∂z1

=

{
1 if w1x > 0

0 if w1x < 0.
= I[w1x > 0] (indicator function)

∂z1
∂w1

= x

(f) What is the derivative of the loss with respect to w1, for this training example?

Solution:
∂E
∂w1

= ∂E
∂y

∂y
∂z2

∂z2
∂a

∂a
∂z1

∂z1
∂w1

=

MIT 6.790 Fall 2024 4

(y− t)× y(1 − y)×w2 × I[w1x > 0]× x =

(2
5 − 1)× 2

5
3
5 ×−1× 1× 2 = 36/125 = .288

(g) What would the update rule for w1 be if the learning rate is η?

Solution:
w1 := w1 − η

∂E

∂w1
:= w1 + .288η

(h) If η is large enough, w1 will update from its current value of 0.1 to a negative value.
Assume our new value is w1 = −0.1. What will be the output of the output unit for an
input of x = 2?

Solution: The ReLU will output 0, since w1 is negative, so only the bias term will
remain in the sigmoid and the output will be σ(−0.2)

(i) What will happen when we try to update the weight, using this new example of x = 2, for
w1 for any value of target? Why?

Solution: The ReLU gate is closed and gradients will not flow backwards through the
ReLU unit. w1 will not be updated with SGD. In fact, if the training examples are all
positive, the input to the ReLU will be always be negative, effectively killing the ReLU.

(j) Is it a bad idea to have a ReLU activation on your output layer?

Solution: Yes, if the input to the ReLU is mostly negative, it will fail to backpropagate
gradients through the entire network.

(k) Consider the case of (i) where we replace our ReLU with the following activation function:

f(z) =

{
z if z > 0

αz if otherwise.
for some small alpha, e.g. α = 0.01, and z = wx. Does this address the problem we were
facing in (i)? (this is known as dying ReLU)

Solution: ReLU units don’t backpropagate any error for negative inputs. The leaky
ReLU allows a small error to backpropagate even with negative input.

MIT 6.790 Fall 2024 5

1.2 Multiple output network

(a)

a1 = ReLU(0,w1x)

y1 = σ(w2a1)

y2 = σ(w3a1)

Write out an abstract symbolic expression for the derivative of the loss with respect to w1

for the network above with two output units, as repeated applications of the chain rule.

Solution:
Etotal =

1
2
(y1 − t1)

2 +
1
2
(y2 − t2)

2 = E1 + E2

∂Etotal
∂w1

=
∂E1

∂w1
+
∂E2

∂w1

∂E1

∂w1
=
∂E1

∂y

∂y

∂a1

∂a1

∂w1

Similarly, for E2

Multi-output (multi-class) networks are used in many settings such as object recognition,
where we are trying to classify an image as being one of K objects. Each of the K possible
objects would correspond to an output unit in the network. For this purpose, the sigmoid
activation and squared loss are replaced by softmax activation and cross-entropy loss.
This is similar to the multi-class logistic regression we saw in the week 4 exercises.
The softmax is given by:

yi =
exi∑K
j=1 e

xj
.

(b) When K > 3, why might sigmoid units be a bad idea?

MIT 6.790 Fall 2024 6

Solution: With sigmoid output units for multiple classes, we cannot guarantee that at
most one output unit activates. The normalization in the softmax makes this happen

2 Noisy Targets [10 points]

2. Consider a binary classification problem in which the true target values are y ∈ {0, 1} with a
network output h(x,w) that represents p(y = 1 | x). However our training set is not true-label
pairs (x,y) but instead noisily labelled pairs (x,y ′), where y ′ are the labels y that have each
been independently flipped with probability ε.

(a) Assuming independent and identically distributed data, write down the error function
corresponding to the negative log likelihood. Verify that the cross entropy error function is
obtained when ε = 0. Note that this error function makes the model robust to incorrectly
labeled data, in contrast to the usual error function.

Solution: Let t(n) ∈ {0, 1} denote the dataset label and y(n) ∈ {0, 1} denote the true
class label for x(n). From the rules of probability we have

p(t = 1|x) =
1∑

y=0

p(t = 1|y)p(y|x) = (1 − ε)h(x(n),w) + ε(1 − h(x(n),w)) (1)

The conditional probability of the data label is then

p(t|x) = p(t = 1|x)t(1 − p(t = 1|x))1−t (2)

Forming the likelihood and taking the negative logarithm we have the error function
in the form

E(w) = −

N∑
n=1

{
t(n) log

[
(1 − ε)h(x(n),w) + ε(1 − h(x(n),w))

]
+ (3)

(1 − t(n)) log
[
1 − (1 − ε)h(x(n),w) − ε(1 − h(x(n),w))

]}
(4)

(b) What is the form of the partial derivative with respect to a single weight in the output
layer?

(c) How does the stochastic gradient update rule for ε = 0.1 differ from the case when ε = 0?

MIT 6.790 Fall 2024 7

3 Architecture Details [10 pts]

3.1 Activations

3. (a) Consider a neural network in which layer ` − 1 takes in some pre-activations a(`−1),
applies the ReLU activation to get the activations of z(`−1) of layer `− 1, and then applies
a randomly initialized linear layer ` to compute the pre-activations a(`) of layer `:

a
(`)
i =

M∑
j=1

wijz
(`−1)
j , z

(`−1)
i = ReLU(a(`−1)

i)

Suppose we initialize the weights w ∼ N(0, ε2) and the pre-activations of the previous
layer a(`−1) ∼ N(0, λ2). Find the setting of ε that keeps the pre-activations of the next
layer a(`) distributed the same way a(`) ∼ N(0, λ2).

3.2 Convolutional Neural Networks

(a) Consider a convolutional neural network layer that takes in a 1d input array of length 5
and applies a feature map that is a convolutional filter of width 3 with stride 1. Show
that this layer is a special case of a fully connected MLP layer by writing out the matrix of
weights that this layer acts like, using shared variables for shared weights and putting 0
for nonexistent connections. Ignore any bias terms.

3.3 Transformers

(a) Express the self-attention function given by

Y = Softmax(
QKT

√
d

)V

as a fully connected network in the form of a matrix that maps the full input sequence
of concatenated word vectors into an output vector of the same dimension. Note that
such a matrix would have O(N2d2) parameters. Show that the self-attention network
corresponds to a sparse version of this matrix with parameter sharing. Draw a sketch
showing the structure of this matrix, indicating which blocks of parameters are shared
and which blocks have all elements equal to zero.

(b) Show that if we omit the positional encoding of input vectors then the outputs of a multi-
head attention layer are equivariant with respect to a reordering of the input sequence.

(c) Consider the positional encoding scheme where for position n the elements rni of the 2d
dimensional positional encoding rn are given for i = 0, 1, · · · , 2d− 1 by:

rni =

sin
(

n
Li/D

)
, if i is even

cos
(

n
L(i−1)/D

)
, if i is odd

MIT 6.790 Fall 2024 8

Show that this scheme has the property that for any fixed integer k, there is a 2d × 2d
matrix Wk, only a function of k, such that rn+k =Wkrn for all integer n.
Show that if the encoding is based purely on sine functions, without cosine functions,
then this property no longer holds.

Hint: Make use of the following trigonometric identities:

cos(A+ B) = cos(A) cos(B) − sin(A) sin(B), sin(A+ B) = cos(A) sin(B) + sin(A) cos(B)

3.4 Graph Neural Networks

(a) Show that a graph attention network in which the graph is fully connected, so that there is
an edge between every pair of nodes, is equivalent to a standard transformer architecture.

4 Online Logistic Regression [10 points]

4. Consider logistic regression for a data set {(x(i),y(i))} with y(i) ∈ {−1, 1}. The loss function for
each sample (x(i),y(i)) with weight vector w is given by

`i(w) = log(1 + exp{−y(i)w>x(i)}) + λ‖w‖2 . (5)

Assume λ = 1 for this problem.

(a) Derive the online convex optimization (OCO) algorithm with online gradient descent
scheme for a sequence of functions {`i} with step-size η. In other words, if w(i) is the
weight vector used to predict the i-th example. Write down equation for w(i+1) in terms
of the w(i), x(i),y(i), and η. Assume that there is no restriction on the domain set of each
w(i), i.e. if x(i) ∈ Rp, then w(i) ∈ B = Rp.

Solution: With online gradient descent, the update step isw(i+1) = w(i)−η∇`i
(
w(i)

)
for each sample

(
x(i),y(i)

)
.

We know ∇`i(w) =
−y(i)x(i) exp{−y(i)w>x(i)}

1 + exp{−y(i)w>x(i)}
+ 2w =

−y(i)x(i)

1 + exp{y(i)w>x(i)}
+ 2w.

Hence, w(i+1) = w(i) − η

(
−y(i)x(i)

1 + exp{y(i)w(i)>x(i)}
+ 2w(i)

)

(b) (optional) We know from the lecture that cross-entropy loss used in online logistic regres-
sion is convex. From this, which of the following is true? Give a short explanation.

•
`i(w

∗) − `i(w
(i))

‖w∗ −w(i)‖
> ∇`i(w(i)) · w

∗ −w(i)

‖w∗ −w(i)‖

•
`i(w

∗) − `i(w
(i))

‖w∗ −w(i)‖
6 ∇`i(w(i)) · w

∗ −w(i)

‖w∗ −w(i)‖
Here, the right hand side represents the slope of `i at w(i) in the direction that point from
w(i) to w∗.

MIT 6.790 Fall 2024 9

Solution: Since the function is convex, any point betweenw(i) andw∗ must be below
the straight line connecting (w(i), `i(w(i))), and (w∗, `i(w∗)). This means that the
tangent line at w(i) must has lower gradient in the direction that point from w(i) to
w∗ than that line, i.e.

`i(w
∗) − `i(w

(i))

‖w∗ −w(i)‖
> ∇`i(w(i)) · w

∗ −w(i)

‖w∗ −w(i)‖

(c) (optional) Use rule of cosine as well as the online gradient descent scheme, show that

‖w(i+1) −w∗‖2 − ‖w(i) −w∗‖2 = η2‖∇`i(w(i))‖2 − 2η∇`i(w(i)) · (w(i) −w∗). (6)

Solution: From the online gradient descent scheme,

w(i+1) −w∗ = (w(i) −w∗) − η∇`i(w(i)).

Use rule of cosine,

‖w(i+1) −w∗‖2 = ‖w(i) −w∗‖2 + η2‖∇`i(w(i))‖2 − 2η∇`i(w(i)) · (w(i) −w∗),

‖w(i+1) −w∗‖2 − ‖w(i) −w∗‖2 = η2‖∇`i(w(i))‖2 − 2η∇`i(w(i)) · (w(i) −w∗).

(d) (optional) In class, we mentioned an upper bound on the quantity Ln − L∗ (known as
regret) where

w∗ = arg min
w

n∑
i=1

`i(w), (7)

L∗ =
1
n

n∑
i=1

`i(w
∗), (8)

and

Ln =
1
n

n∑
i=1

`i(w
(i)). (9)

Use these definitions , and results from previous two sub-problems to show that

Ln − L∗ 6
1

2n

(
1
η
‖w(1) −w∗‖2 + η

n∑
i=1

‖∇`i(w(i))‖2

)
(10)

Solution: From the sub-problem 3, we can rearrange the terms, and get

2η∇`i(w(i)) · (w(i) −w∗) = η2‖∇`i(w(i))‖2 − ‖w(i+1) −w∗‖2 + ‖w(i) −w∗‖2,

∇`i(w(i)) · (w(i) −w∗) =
1
2

(
η‖∇`i(w(i))‖2 +

1
η

(
‖w(i) −w∗‖2 − ‖w(i+1) −w∗‖2

))
.

MIT 6.790 Fall 2024 10

Substitute this into the result from sub-problem 2 gives

`i(w
(i)) − `i(w

∗) 6
1
2

(
η‖∇`i(w(i))‖2 +

1
η

(
‖w(i) −w∗‖2 − ‖w(i+1) −w∗‖2

))
.

Hence,

Ln − L∗ =
1
n

n∑
i=1

(`i(w
(i)) − `i(w

∗))

6
1

2n

n∑
i=1

(
η‖∇`i(w(i))‖2 +

1
η

(
‖w(i) −w∗‖2 − ‖w(i+1) −w∗‖2

))

=
1

2n

(
1
η

(
‖w(1) −w∗‖2 − ‖w(n+1) −w∗‖2

)
+ η

n∑
i=1

‖∇`i(w(i))‖2

)

6
1

2n

(
1
η
‖w(1) −w∗‖2 + η

n∑
i=1

‖∇`i(w(i))‖2

)
.

(e) Suppose A priori you only know very coarse information about the data set: you know n,
w(1) = 0, ‖w∗‖ 6 1, and that ‖x(i)‖ 6 77. What value of η would you choose for running
OCO? (Hint: try upper-bounding ‖∇`i(w(i))‖.)

Solution: From the optimal η∗ in sub-problem 5, we must first upper bound the
sum of loss gradient in the denominator. In this way, if we choose η to minimize an
upperbound of gradients of regret, then weâĂŹre minimizing the gradients of regret
by proxy.
We notice that from sub-problem 1,∥∥∥∇`i(w(i))

∥∥∥ =

∥∥∥∥ −y(i)x(i)

1 + exp{y(i)w(i)>x(i)}
+ 2w(i)

∥∥∥∥
By triangle inequality, we can bound this as∥∥∥∥ −y(i)x(i)

1 + exp{y(i)w(i)>x(i)}
+ 2w

∥∥∥∥ 6

∥∥∥∥ −y(i)x(i)

1 + exp{y(i)w(i)>x(i)}

∥∥∥∥+ ‖2w(i)‖

6 ‖x(i)‖+ 2‖w(i)‖
6 77 + 2 ∗ 1 = 79

Note, ‖w(i)‖ 6 1 because we can apply projected gradient descent to this OCO prob-
lem. Given that we are certain that ||w∗|| 6 1, we can say that ||w(i)|| 6 1 after the
projection step for all t.
Therefore, the denominator term is(

n∑
i=1

‖∇`i(w(i))‖2

) 1
2

6

(
n∑

i=1

792

) 1
2

= 79
√
n.

MIT 6.790 Fall 2024 11

Hence, we should choose

η =
1

79
√
n

.

5 Adversarial Example [10 points]

5. Willy Makeit has trained up a one-layer neural network with a sigmoid activation function to
classify ferns based on several important features of their leaves. The hypothesis is:

h(x;W,W0) = σ(W
Tx+W0) .

Willy is particularly excited to find that this network correctly classifies an important but
unusual-looking species of fern (which we will call x∗) as a positive example.

We expect ferns with extremely similar features to x∗ to be of the same class as x∗ so we’d
expect them to also always be classified positively if Willy’s classifier is good. Betty Wont wants
to defeat Willy’s classifier by finding another fern, xA, that is very similar to x∗ but which
Willy’s classifier predicts is negative.

The problem Betty wants to solve can be framed as finding a new input xA = arg minx J(x),
where

J(x) = α‖x− x∗‖2 + max(0,h(x;W,W0) − 0.5) .

(a) Which term in the objective J depends on the class of x? Explain in words what it is
computing and why it makes sense in this problem.

(b) Betty thinks gradient descent would be a good way to solve this problem. If x ∈ Rd, what
are the dimensions of ∇xJ(x)?

(c) Write an expression for
∇xJ(x)

in terms of W, W0, and x. Recall that σ(z) = ez

ez+1 and σ ′(z) = σ(z)(1 − σ(z)).

(d) If Betty sets α to a very small value and finds xA = arg minx J(x), is it likely that she will
have succeeded in finding a plant similar to x∗ that is classified as negative? Explain why
or why not.

(e) If Betty sets α to a very large value and finds xA = arg minx J(x), is it likely that she will
have succeeded in finding a plant similar to x∗ that is classified as negative? Explain why
or why not.

Hint: it might be helpful (but not strictly necessary) to look at the logistic distribution in order to avoid com-
plicated integral calculations.

Solution:

MIT 6.790 Fall 2024 12

(a) Solution: The second term depends on the class of x. If the class of x is negative,
Willy’s classifier h outputs a value < 0.5, in which case, the second term evaluates
to 0. Otherwise, for x of positive class, h outputs a value > 0.5, and the second
term is this output minus 0.5, a positive value. Thus, this term will penalize
positive predictions, with a greater loss the farther these predictions are from 0.5.
However, once the prediction goes below 0.5, Betty is happy since the fern is now
misclassified, so the loss goes to 0.

The first term has no depency on the class of x, only on the distance between x
and x∗.

(b) Solution: 1 × d. Since we are taking the gradient of a scalar with respect to a
d-dimensional vector x, the shape of the output should match the shape of x.

(c) Solution: We take the gradient of each term separately:

J(x) = J1(x) + J2(x),

where J1(x) = α‖x− x∗‖2 = α(x− x∗)T (x− x∗) and J2(x) = max(0,h(x;W,W0) −

0.5). We have
∇xJ1(x) = 2α(x− x∗).

If h(x;W,W0) 6 0.5, this term evaluates to 0 so the gradient is the 0 vector (with
the shape of x). Otherwise, applying the chain rule,

∇x(h(x;W,W0) − 0.5) = σ(WTx+W0)(1 − σ(WTx+W0))∇x(W
Tx+W0)

= σ(WTx+W0)(1 − σ(WTx+W0))W

= h(x;W,W0)(1 − h(x;W,W0)W

Thus, we have

∇xJ(x) = 2α(x− x∗) +

{
0 if h(x;W,W0) 6 0.5

h(x;W,W0)(1 − h(x;W,W0))W otherwise.

MIT 6.790 Fall 2024 13

(d) Solution: Yes, surprisingly. (Almost all of the staff got this one wrong).

When α is positive but very small, then Betty will find the plant that is closest
to x∗, but classified as negative. This is because, for any negative example, the
second term is 0. Then, within the space of x’s that are negative, the first term
will push the solution as close as possible to x∗.

(e) Solution: No. Here, the stress of the objective function shifts to having xA be
close to x∗, at the expense of having xA get misclassified. Thus, she’ll likely get
something very similar to x∗ that does not receive a negative classification.

	ReLU Backpropagation [optional]
	Single output network
	Multiple output network

	Noisy Targets [10 points]
	Architecture Details [10 pts]
	Activations
	Convolutional Neural Networks
	Transformers
	Graph Neural Networks

	Online Logistic Regression [10 points]
	Adversarial Example [10 points]

