
6.790 Homework 3
Revision: 10/7/24 8:12AM Solutions

Questions 1 is optional. The remaining problems are required. All the questions are written
(don’t include running code) and go over modeling choices, decision boundaries, uncertainty esti-
mation, and optimization. There are some hints in the blue boxes that are supposed to help you in
your solution, but you can choose to disregard them.

Please hand in your work via Gradescope via the link at https://gradml.mit.edu/info/homeworks/.
If you were not added to the course automatically, please use Entry Code R7RGGX to add yourself
to Gradescope. Make sure to assign the problems to the corresponding pages in your solution when
submitting via Gradescope.

1. Latex is not required, but if you are hand-writing your solutions, please write clearly and
carefully. You should include enough work to show how you derived your answers, but you
don’t have to give careful proofs.

2. Homework is due on Tuesday October 8 at 11PM.

3. Lateness and extension policies are described at https://gradml.mit.edu/info/class_policy/.
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Solution: Don’t look at the solutions until you have tried your absolute hardest to solve the
problems. This is especially true for optional problems that you didn’t work on—it’s a good
idea to come back to them when studying for exams.

1 Optional warm-up: Logistic regression: basic intuition with one-
dimensional data

1.

Consider a simple one dimensional logistic regression model

P(y = 1 | x,w) = σ(w0 +w1x)

where σ(z) = (1 + exp(−z))−1 is the logistic function.

The figure above shows two possible conditional distributions P(y = 1 | x,w), viewed as a
function of x, that we can get by changing the parameters w.

Assume we have a data set D = {(−1, 0), (0, 1), (1, 0)}.

(a) How many classification errors does hypothesis 1 make?

(b) How many classification errors does hypothesis 2 make?

(c) Which of these two hypotheses assigns a higher likelihood to the data?

(d) If your loss function for predictions was

L(g,a) =


0 if g = a

1 if g = 1 and a = 0

10 if g = 0 and a = 1

• What output would you predict for x = −1 when conditional (1) is the result of your
learning?
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• What output would you predict for x = −1 when conditional (2) is the result of your
learning?

Solution: 1. Conditional (1) makes (1) classification errors, Conditional (2) makes (1)
classification errors.

2. (1). Because:

P1 = 0.67× 0.33× 0.67 = 0.07,P2 = 1× 1× 0.01 = 0.01,P1 > P2

3. When P(y = 1|x,w) > 1/11, predict 1, otherwise, predict 0. See week 1 Exercise,
question 6 for the detail.

2 Noisy sensor [10 points]

2. You are trying to solve a perceptual recognition problem for a robot in simulation, and you find
that you can find a function f(x) = θTx that has the property that if f(x) > 0 then the robot
can fit through the door it is looking at and if it’s less than 0 then the robot can’t fit.

Now you are going to deploy this system in the real world, but find that there are some pertur-
bations in the world that make your prediction rule less accurate than it was. We can model
the real-world process as

y =

{
1 if θTx+ ϵ ⩾ 0

0 otherwise

You gather a lot of data and find that the noise ϵ seems to have a distribution with pdf e−ϵ

(1+e−ϵ)2

Obviously you can’t really apply this predictor in the real world, because you don’t know the ϵ

value! But, given a new input x, you can compute f(x) and you think the higher that value is,
the more sure you ought to be that the actual y value associated with it will be 1.

Under the assumptions above, what is p(y = 1 | f(x))? Your final answer can be written in
terms of f(x), θ, x and should not include integrals.

Hint: it might be helpful (but not strictly necessary) to look at the logistic distribution in order to avoid com-
plicated integral calculations.

Solution:

We are given that:

y =

{
1 if θTx+ ϵ ⩾ 0

0 otherwise

This implies that y = 1 when ϵ ⩾ −θTx and y = 0 otherwise.
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To find p(y = 1 | f(x)), we want to determine the probability that ϵ ⩾ −θTx = −f(x).
Mathematically, this is:

p(y = 1 | f(x)) = p(ϵ ⩾ −f(x))

We are given that the noise ϵ has a probability density function (pdf) of:

p(ϵ) =
e−ϵ

(1 + e−ϵ)2

This is the pdf of the logistic distribution with a mean of 0 and a scale parameter of 1. The
cumulative distribution function (CDF) of a logistic distribution is:

P(ϵ ⩽ f(x)) =
1

1 + e−f(x)

Thus, the probability that ϵ ⩾ −f(x) is:

p(ϵ ⩾ −f(x)) = 1 − P(ϵ < −f(x)) = 1 −
1

1 + ef(x)
=

1
1 + e−f(x)

= σ(f(x))

This is the logistic function, which is commonly used in logistic regression models to map
the output of a linear function to a probability between 0 and 1.

The solution is:

p(y = 1 | f(x)) =
1

1 + e−f(x)
= σ(f(x))

where σ is the sigmoid function.

Alternative solution:

If one doesn’t recognize that ϵ follows a logistic distribution, we can instead explicitly solve
an integral to get the same solution.

The probability that y = 1, i.e., ϵ ⩾ −f(x), is expressed as:

p(y = 1 | f(x)) = p(ϵ ⩾ −f(x)) =

∫∞
−f(x)

e−ϵ

(1 + e−ϵ)2 dϵ

We can solve it using a change of variables and get the same final solution as above.
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3 How wrong? [15 points]

3. You are the chief data scientist at Yoyodyne. Your job is to predict the lifetime, in days, of your
new Dynamo fan product. You have run 200 dynamo fans to exhaustion in different situations,
drawn from the same environmental distribution. For each you have collected information
about the humidity, temperature, particulate density, and energy quality of the location it was
used in, as well as the working lifetime of the fan in days. You divide the data into a training set
of size 180 and a validation set of size 20, and use 6.790 methods on the training set (without
peeking at the validation set...even once!) to come up an awesome hypothesis h.

(You can either do parts a, b, and c or do just part d).

(a) (5 points) You evaluate h on your validation set, using squared loss, and end up with a
mean loss of Mn = 50 with a standard deviation of σ̂ = 10.
You are completely convinced that you know the standard deviation and that the true σ = 10,
as well.
Provide a bound on the probability that the true risk of h is greater than 60.
Feel free to use the following application of Chebychev’s inequality:

Proposition: Let X1, . . . ,Xn be iid with finite mean µ and variance σ2, and let
Mn = (X1 + . . . + Xn)/n. Then

P(|Mn − µ| ⩾ ϵ) ⩽
σ2

nϵ2

Solution:
We are given:

• Sample mean loss on the validation set: Mn = 50

• Standard deviation of the loss: σ = 10

• Sample size: n = 20

• We need to bound the probability that the true risk µ is greater than 60.

We will use Chebyshev’s inequality:

P(|Mn − µ| ⩾ ϵ) ⩽
σ2

nϵ2

where:

• ϵ = 60 − 50 = 10

• σ2 = 100 (variance of individual observations)
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We are interested in P(µ−Mn ⩾ 10) which is less than or equal to P(|Mn − µ| ⩾ 10).
Now, applying Chebyshev’s inequality:

P(|Mn − µ| ⩾ 10) ⩽
100

20× 102 =
1
20

= 0.05

Thus, the probability that the true risk µ is greater than 60 is bounded by:

P(µ > 60) ⩽ 0.05

(b) (5 points) Now, the marketing department wants to make a web site that allows cus-
tomers to input the parameters of their intended deployment, and then outputs the result
of applying h to that situation to predict the Dynamo’s lifetime. They call to ask you what
kind of claim it can make about the reliability your predictions!
In particular, they want to say that, 99 times out of 100, the prediction is within some δ of
the true lifetime. Assuming that the standard deviation of the distribution of the prediction
error is σerr = 10, what is the smallest value of δ you can responsibly claim? (It is fine to
assume that the mean prediction error is 0.)
Here’s the basic version of Chebychev’s inequality (you should be able to figure out the
relationship between this and the previous version), which you might find helpful.

Proposition: Let X be a random variable with finite mean µ and variance σ2. Then

P(|X− µ| ⩾ kσ) ⩽
1
k2

Is the standard deviation of the prediction error the same as the standard error (described
in lecture 7)? Explain.

Solution: We need to determine the smallest value of δ such that, with 99

P(|h(x) − y| ⩽ δ) ⩾ 0.99

We want to ensure that:

P(|h(x) − y| ⩾ δ) ⩽ 0.01

In this version of Chebyshev’s inequality, the probability we will achieve our error
bound is 1/k2 which needs to be less than or equal to 0.01, so we’ll let k = 10.
And so, the guarantee we can make is that

P(|h(x) − y| ⩾ 10 · 10) ⩽ 0.01

Thus, you can claim that "99 times out of 100, the predicted Dynamo lifetime is within
approximately 100 days of the true lifetime."
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The standard error is the standard deviation of our estimate of the mean of the distribu-
tion of interest. It is influenced by the sample standard deviation, but it is not itself an
estimate of the standard deviation of the distribution we are sampling from. In parts
1 and 2 of this problem, we assumed a known standard deviation of the distribution
we are sampling from. If we hadn’t known it, we couldn’t have used Chebychev’s in-
equality and would have had to use something looser like Hoeffding’s inequality. Or!
See the last part of this question.

The original version of the problem was slightly different, below is the solution to that version.

We need to determine the smallest value of δ such that, with 99

P(|h(x) − y| ⩽ δ) ⩾ 0.99

Chebyshev’s inequality states:

P(|Mn − µ| ⩾ δ) ⩽
σ2

nδ2

We want to ensure that:

P(|Mn − µ| ⩾ δ) ⩽ 0.01

Substituting the given values:

• σ2 = 100 (since σ = 10)

• n = 20

100
20δ2 ⩽ 0.01

Solving for δ:

δ2 ⩾
5

0.01
= 500

δ ⩾
√

500 ≈ 22.36

Thus, you can claim that “99 times out of 100, the predicted Dynamo lifetime is within
approximately 22.36 days of the true lifetime."

(c) (5 points) Thinking back, you wonder what would have happened if you had changed
the percentage of your data you used for training vs testing. Qualitatively, how would you
expect your answers to the previous two questions to change, if you had used 50% of your
data for training and 50% for validation, compared to your original setup, where 90% of
the data was used for training and 10% for validation?
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Solution:

1. Probability bound on true risk (part a): A larger validation set reduces the vari-
ance in the estimate of the true risk, leading to a tighter (smaller) bound on the
probability that the true risk exceeds 60.

But! Using less of the data for constructing the hypothesis might result in mak-
ing worse predictions with higher risk.

2. The smallest δ you can claim with 99% confidence might increase, as the model
built from a smaller training set could be less accurate. Therefore, the predic-
tions might be farther from the true lifetime, requiring a larger δ to maintain
the same confidence level.

(d) (0 points) (Alternative to a,b,c (15 points): interesting if you like statstics!) Equation 2 of
the paper Multivariate Chebyshev Inequality with Estimated Mean and Variance by Stellato,
Van Parys, and Goulart, https://mitsloan.mit.edu/shared/ods/documents?PublicationDocumentID=4759
contains a bound (due to Saw et al) on the error of using the sample mean as a prediction
for the n + 1st value, as a function of the sample mean, sample standard deviation, and
sample size. This is pretty cool! Play with it and see if you can use it to estimate an error
of your next prediction, given a sample mean of 50 and sample standard deviation of 10.
You might need to increase n to get a reasonable bound.

4 Why not regression? [10 points]

4. Jan is trying to do classification: y(i) ∈ {0, 1} and x(i) ∈ R. But he slept through all of the
classification lectures, so he decides to solve classification using regression. That is, he ignores
the fact that y(i) is binary, and fits a linear regression function via least squares. The resulting
regression function is:

ŷ = f(x;w) = w0 + xw1

Jan uses the decision rule: label 1 if f(x;w) > 1/2; and label 0 otherwise.

Suppose the training data is linearly separable. Is Jan’s decision rule (with associated regres-
sion function) guaranteed to classify the training data without error?

1. Yes. Provide a short argument:

2. No. Provide a counterexample:

Solution: No.

Key points: Full credit given for counterexample (does not need to be explicitly spelled out
with all the constants, see below). Partial credit for correct answer without counterexam-
ple.
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Consider the dataset:

(−1/2, 0) repeated n times
(0, 1)
(1, 1) repeated n times

The data is linearly separable in X (for example, by X = −1
4 ). As n → ∞, the best fit line

→ 2x
3 + 1

3 . Thus, for large n, the prediction at x = 0 will be class 0 since 2∗0
3 + 1

3 = 1/3 < 1/2,
so the middle point (which is of class 1) will be misclassified by Rick’s decision rule.

5 Modeling the distribution versus training a classifier [15 points]

5. (Murphy 10.3)

Suppose we train the following binary classifiers via maximum likelihood.

(a) GaussI: A generative classifier, where the class conditional densities are Gaussian, with
both covariance matrices set to I (identity matrix), i.e., p(x | y = c) = N(x | µc, I). We
assume p(y) is uniform.

(b) GaussX: as for GaussI, but the covariance matrices are unconstrained, i.e., p(x | y = c) =

N(x | µc,Σc).

(c) LinLog: A logistic regression model with linear features.

(d) QuadLog: A logistic regression model, using linear and quadratic features (i.e., polyno-
mial basis function expansion of degree 2).

After training we compute the performance of each model M on the training set as follows:

L(M) =
1
n

n∑
i=1

logp(y(i) | x(i), θ̂,M)

Note that this is the conditional log-likelihood p(y | x, θ̂,M) and not joint log-likelihood p(y, x |

θ̂,M). We now want to compare the performance of each model. We will write L(M) ⩽ L(M ′)

if model M must have lower or equal log likelihood on the training set than M ′, for any training
set (in other words, M is worse than M ′, at least as far as training set logprob is concerned). For
each of the following model pairs, state whether L(M) ⩽ L(M ′),L(M) ⩾ L(M ′), or whether
no such statement can be made (i.e., M might sometimes be better than M ′ and sometimes
worse); also, for each question, briefly (1-2 sentences) explain why.

(a) (3 points) GaussI, LinLog

(b) (3 points) GaussX, QuadLog

(c) (3 points) LinLog, QuadLog

(d) (3 points) GaussI, QuadLog
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(e) (3 points) Now suppose we measure performance in terms of the average misclassifica-
tion rate on the training set:

R(M) =
1
n

n∑
i=1

I(y(i) ̸= ŷ(x(i)))

where ŷ(x(i)) is the predicted y for x(i). Is it true in general that L(M) > L(M ′) implies
that R(M) < R(M ′)? Explain why or why not.

Solution:

(a) GaussI ⩽ LinLog. Both have logistic (sigmoid) posteriors p(y | x,w) = σ(y|wTx),
but LinLog is the logistic model which is trained to maximize p(y | x,w). (GaussI
may have high joint p(y, x), but this does not necessarily mean p(y | x) is high; Lin-
Log can achieve the maximum of p(y | x), so will necessarily do at least as well as
GaussI). Note that Logistic regression (LinLog) directly models the conditional proba-
bility p(y|x), optimizing it via maximum likelihood.

(b) GaussX ⩽ QuadLog. Both have logistic posteriors with quadratic features, but Quad-
Log is the model of this class maximizing the average log probabilities.

(c) LinLog ⩽ QuadLog. Logistic regression models with linear features are a subclass of
logistic regression models with quadratic functions. The maximum from the super-
class is at least as high as the maximum from the subclass.

(d) GaussI ⩽ QuadLog. Follows from above inequalities.

(e) Although one might expect that higher log likelihood results in better classification
performance, in general, having higher average logp(y | x) does not necessarily trans-
late to higher or lower classification error. For example, consider linearly separable
data. We have L(LinLog) > L(GaussI), since maximum likelihood logistic regression
will set the weights to infinity, to maximize the probability of the correct labels (hence
p(y(i) | x(i), ŵ) = 1 for all i). However, we have R(LinLog) = R(GaussI), since the
data is linearly separable. (The GaussI model may or may not set σ very small, re-
sulting in possibly very large class conditional pdfs; however, the posterior over y is a
discrete pmf, and can never exceed 1.)

As another example, suppose the true label is always 1 (as opposed to 0), but model
M always predicts p(y = 1 | x,M) = 0.49. It will always misclassify, but it is at least
close to the decision boundary. By contrast, there might be another model M ′ that
predicts p(y = 1 | x,M ′) = 1 on even-numbered inputs, and p(y = 1 | x,M ′) = 0 on
odd-numbered inputs. Clearly R(M ′) = 0.5 < R(M) = 1, but L(M ′) = −∞ < L(M) =

log(0.49).
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6 Naive Bayes Classification [15 points]

Consider a K-class classification problem where the input vector x = (x1, x2, . . . , xM) consists
of M binary components, where each xi ∈ {0, 1}, and the output y is a one-hot vector of length
K, encoding the class label.

Consider the following generative model:

• The probability of y is given by p(y = k) for each class k, and
∑K

k=1 p(y = k) = 1.

• The features xi are conditionally independent given the class y, so the joint probability
can be factorized as:

p(x,y) = p(y)

M∏
i=1

p(xi | y)

This represents an example of the naive Bayes model. Assuming you have access to labeled
training data, we can use Maximum Likelihood Estimation (MLE) to estimate the parameters:

• The prior probability estimate is p̂(y = k) = Nk

N , where Nk is the number of training
examples that belong to class k and N is the total number of training examples.

• The MLE estimate for the conditional probability is p̂(xi = 1 | y = k) = Nki

Nk
, where Nki

is the number of examples in class k where xi = 1, and Nk is the number of examples in
class k.

(a) (5 points) Suppose we are given a new binary feature vector x = (x1, x2, . . . , xM), and
we want to predict the class label. The prediction is made using the posterior probability
p(y = k | x). Show that the posterior probability can be written in the form:

p(y = k | x) =
exp(ak)∑K
j=1 exp(aj)

where
ak = logp(x,y = k)

Solution: The posterior probability is given by Bayes’ theorem:

p(y = k | x) =
p(x | y = k)p(y = k)

p(x)

Since we are interested in comparing the class probabilities, we can express this as:

p(y = k | x) =
p(x | y = k)p(y = k)∑K
j=1 p(x | y = j)p(y = j)

We can rewrite the posterior as:

p(y = k | x) =
exp(ak)∑K
j=1 exp(aj)

where
ak = log (p(x | y = k)p(y = k))
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(b) (10 points) Show that ak is a linear function of the components of x.

Solution: We have:
ak = log (p(x | y = k)p(y = k))

Using the conditional independence assumption, we can factor p(x | y = k) as:

p(x | y = k) =

M∏
i=1

p(xi | y = k)

Thus, we can express ak as:

ak = logp(y = k) +

M∑
i=1

logp(xi | y = k)

For each binary feature xi, we can write p(xi | y = k) as:

p(xi | y = k) = p(xi = 1 | y = k)xi · p(xi = 0 | y = k)1−xi

Substituting this into the expression for ak:

ak = logp(y = k) +

M∑
i=1

[xi logp(xi = 1 | y = k) + (1 − xi) logp(xi = 0 | y = k)]

= log
Nk

N
+

M∑
i=1

[
xi log

Nki

Nk
+ (1 − xi) log

(
1 −

Nki

Nk

)]
This shows that ak is a linear function of the binary components xi, as it is a sum of
terms proportional to xi.

7 Optimizing logistic regression [15 points]

6. In this problem, suppose you were hypothetically provided with a classification dataset dataset.csv
for binary classification. Suppose the file dataset.csv contains a matrix of size 1672×65, where
the last column of the matrix is the class label. Thus, the data matrix X is of dimension n× d,
where n = 1672 and d = 64 (Remark: The digits are 8× 8 pixel images that have been turned
into vectors of length 64), and the label vector y ∈ {0, 1}n is the last (hence, 65th) column.

We will use this data with regularized logistic regression that has the objective function:

R(w) :=
1
n

n∑
i=1

ℓi(w)︸ ︷︷ ︸
ℓ(w)

+
λ

2
∥w∥2

2︸ ︷︷ ︸
r(w)

, (1)

where ℓi(w) := log(1 + e−yiw
⊤xi

) and r(w) is the regularizer. Note: (1) expects yi ∈ {−1, 1}.
Moreover, we have designed the dataset to be linearly separable, so actually a loss value close
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to 0 should be achievable empirically (which corresponds to 100% training accuracy) when
λ = 0 is used.

In this question, we will recall gradient descent (GD) and stochastic gradient descent (SGD)
for optimizing the regularized loss function (1) with the choice λ > 0.

(a) (5 points) Provide an expression for the gradient of the objective function, i.e., an expres-
sion for ∇R(w).

Solution: 1
n

∑n
i=1 zix

i + λw, where zi =
−yi

1+eyiw
⊤xi

.

Key points: Take the gradient of each component ℓi(w) of ℓ(w), and of r(w) = λ
2 ∥w∥

2
2.

First, ∇r(w) = ∇λ
2 w

⊤w = λw. Then, for any i and j,

∂

∂wj
ℓi(w) =

∂

∂wj
log(1 + e−yiw

⊤xi

) (2)

=
−yix

i
j

1 + e−yiw⊤xi
e−yiw

⊤xi

(3)

=
−yi

1 + eyiw⊤xi
xij (4)

(note the cancellation of e−yiw
⊤xi

and 1/e−yiw
⊤xi

= eyiw
⊤xi

) and hence, letting
zi =

−yi

1+eyiw
⊤xi

, we have

∇ℓi(w) = zix
i (5)

Then, we put it together:

∇R(w) = ∇
(

1
n

n∑
i=1

ℓi(w) + r(w)

)
=

1
n

n∑
i=1

zix
i + λw (6)

(b) (5 points) In SGD, we use a stochastic gradient g(w) instead of∇R(w). We compute g(w)

by selecting a batch of b data points {xi1 , . . . , xib}, where each ij is sampled uniformly with
replacement from {1, 2, . . . ,n}, and each xij is the corresponding row from the data matrix
X. Provide an expression for the resulting (mini-batch) stochastic gradient .

Solution:
The stochastic gradient assumes the form

g(w) :=
1
b

b∑
j=1

zijx
ij + λw, (7)

where zi =
−yi

1+eyiw
⊤xi

.

Key points: The stochastic gradient is just the gradient from the previous part (4.1(a))
on a randomly-chosen subset of data points; reuse the expression from the previous
part but with xi1 , . . . , xib rather than x1, . . . , xn.



MIT 6.790 Fall 2024 14

(c) (5 points) Show that the gradient you derived above is unbiased, i.e., E[g(w)] = ∇R(w),
where the expectation is computed over the randomness of the batch.

Solution: Key points: Take an expectation of the expression from 4.1(b) over uniformly-
random points and derive the expression from 4.1(a).

Since each ij is uniformly randomly chosen from [n], for any j,

E[zijxij ] =
1
n

n∑
i=1

zix
i (8)

Then by linearity of expectation, we have

E[g(w)] =
1
b

b∑
j=1

E[zijxij ] + λw (9)

=
b

b

1
n

n∑
i=1

zix
i + λw (10)

=
1
n

n∑
i=1

zix
i + λw (11)

= ∇R(w) (12)

from question 4.1(a).

8 Softmax [20 points]

An approach to multi-class classification is to use a generalized version of the logistic model.
Let x = [x1, x2, . . . , xd] be an input vector, and suppose we would like to classify into k classes;
that is, the output y can take a value in 1, . . . ,k. The softmax generalization of the logistic
model uses k(d + 1) parameters θ = (θij), i = 1, . . . ,k, j = 0, . . . ,d, which define the following
k intermediate values:

z1 = θ10 +
∑
j

θ1jxj

· · ·
zi = θi0 +

∑
j

θijxj

· · ·
zk = θk0 +

∑
j

θkjxj

The classification probabilities under the softmax model are:

Pr(y = i | x; θ) =
ezi∑k
j=1 e

zj
.
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(a) (5 points) Show that when k = 2 the softmax model reduces to the logistic regression
model. That is, show how both give rise to the same classification probabilities Pr(y | x).
Do this by constructing an explicit transformation between the parameters: for any given
set of 2(d+ 1) softmax parameters, show an equivalent set of (d+ 1) logistic parameters.

Hint: you can write the posterior of the logistic model given its parameter θ ′, and find the relationship
between θ ′ and θ

Solution: The posterior of a logistic model with weights θ ′

P(Y = 1|x; θ) =
1

1 + e−z ′

where z ′ = θ ′
0 +

∑
j θ

′
jxj. The posterior of the softmax model when k = 2,

P(Y = 1|x; θ) =
ez1

ez1 + ez2

equating the two

1
1 + e−z ′ =

ez1

ez1 + ez2

ez1 + ez2 = ez1 + ez1e−z ′
= ez1 + ez1−z ′

ez1−z ′
= ez2

z ′ = z1 − z2

If θ ′
j = θ1j − θ2j for each j, the softmax model reduces to the logistic model.

(b) (5 points) What type of decision boundary is possible for a softmax model? (e.g. linear,
quadratic etc.)

Solution: Only linear decision boundaries are possible.
Explanation: A softmax model, like logistic regression, is a linear classifier. Each
class i is associated with a linear decision function zi = θi0 +

∑
j θijxj. The decision

boundaries between any two classes are determined by the hyperplane where zi =

zj, which corresponds to a linear decision boundary in the input space. Therefore,
softmax can only create linear decision boundaries.

(c) (10 points) A stochastic gradient ascent learning rule for softmax is given by:

θij ← θij + α
∑
t

∂

∂θij
log Pr(yt | xt; θ) ,

where (xt,yt) are the training examples. We would like to rewrite this rule as a delta
rule. In a delta rule the update is specified as a function of the difference between the
target and the prediction. In our case, our target for each example will actually be a vector
yt = (yt

1, . . . ,yt
k) where yt

i = 1 if yt = i and 0 otherwise.
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Our prediction will be a corresponding vector of probabilities:

ŷt = (Pr(y = 1 | xt; θ), . . . , Pr(y = k | xt; θ))

Calculate the derivative above (i.e. ∂
∂θij

log Pr(yt | xt; θ)) and rewrite the update rule as
a function of y− ŷ

Hint: it might be helpful to calculate ∂zi
∂θij

Hint: it might be helpful to consider two cases: y = i and y ̸= i

Solution: Sometimes it is easier to calculate derivatives in log-scale.

logP(y = i|x) = zi − log
∑
l

ezl

∂zi
∂θij

= xj

Two cases

y = i :
∂ logP(y = i)

∂θij
= 1 · xj −

ezi∑
l e

zl
xj = yixj − ŷixj

y ̸= i :
∂ logP(y = k ̸= i)

∂θij
= 0 · xj −

ezi∑
l e

zl
xj = yixj − ŷixj

Combining them in the vector form

∂ logP(yt|xt)
∂θij

= yt
ixj − ŷt

ixj = (yt − ŷt)Txt

Therefore, the update rule is

θ← θ+ α
∑
t

(yt − ŷt)Txt
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