6.790 Homework 3

Revision: 10/7/24 8:12AM

Questions 1 is optional. The remaining problems are required. All the questions are written
(don’t include running code) and go over modeling choices, decision boundaries, uncertainty esti-
mation, and optimization. There are some hints in the blue boxes that are supposed to help you in
your solution, but you can choose to disregard them.

Please hand in your work via Gradescope via the link at https://gradml.mit.edu/info/homeworks/.
If you were not added to the course automatically, please use Entry Code R7RGGX to add yourself
to Gradescope. Make sure to assign the problems to the corresponding pages in your solution when
submitting via Gradescope.

1. Latex is not required, but if you are hand-writing your solutions, please write clearly and
carefully. You should include enough work to show how you derived your answers, but you
don’t have to give careful proofs.

2. Homework is due on Tuesday October 8 at 11PM.

3. Lateness and extension policies are described at https://gradml.mit.edu/info/class_policy/.
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1 Optional warm-up: Logistic regression: basic intuition with one-
dimensional data
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Consider a simple one dimensional logistic regression model
Ply =1[x,w) = o(wo +wix)

where o(z) = (1 +exp(—z)) ! is the logistic function.

The figure above shows two possible conditional distributions P(y = 1 | x,w), viewed as a
function of x, that we can get by changing the parameters w.

Assume we have a data set D ={(—1,0),(0,1), (1,0)}.
(a) How many classification errors does hypothesis 1 make?
(b) How many classification errors does hypothesis 2 make?
(c) Which of these two hypotheses assigns a higher likelihood to the data?

(d) If your loss function for predictions was

0 ifg=a
L(ga)=¢1 ifg=1landa=0
10 ifg=0anda=1

* What output would you predict for x = —1 when conditional (1) is the result of your
learning?
* What output would you predict for x = —1 when conditional (2) is the result of your

learning?
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2 Noisy sensor [10 points]

2. You are trying to solve a perceptual recognition problem for a robot in simulation, and you find
that you can find a function f(x) = 0Tx that has the property that if f(x) > 0 then the robot
can fit through the door it is looking at and if it’s less than O then the robot can’t fit.

Now you are going to deploy this system in the real world, but find that there are some pertur-
bations in the world that make your prediction rule less accurate than it was. We can model
the real-world process as

B 1 if6T'x+e>0
Y= 0 otherwise

You gather a lot of data and find that the noise € seems to have a distribution with pdf ﬁ
Obviously you can’t really apply this predictor in the real world, because you don’t know the €
value! But, given a new input x, you can compute f(x) and you think the higher that value is,

the more sure you ought to be that the actual y value associated with it will be 1.

Under the assumptions above, what is p(y = 1 | f(x))? Your final answer can be written in
terms of f(x), 0, x and should not include integrals.

Hint: it might be helpful (but not strictly necessary) to look at the logistic distribution in order to avoid com-
plicated integral calculations.

3 How wrong? [15 points]

3. You are the chief data scientist at Yoyodyne. Your job is to predict the lifetime, in days, of your
new Dynamo fan product. You have run 200 dynamo fans to exhaustion in different situations,
drawn from the same environmental distribution. For each you have collected information
about the humidity, temperature, particulate density, and energy quality of the location it was
used in, as well as the working lifetime of the fan in days. You divide the data into a training set
of size 180 and a validation set of size 20, and use 6.790 methods on the training set (without
peeking at the validation set...even once!) to come up an awesome hypothesis h.

(You can either do parts a, b, and c or do just part d).

(a) (5 points) You evaluate h on your validation set, using squared loss, and end up with a
mean loss of M, = 50 with a standard deviation of & = 10.
You are completely convinced that you know the standard deviation and that the true o = 10,
as well.
Provide a bound on the probability that the true risk of h is greater than 60.
Feel free to use the following application of Chebychev’s inequality:

Proposition: Let Xy, ..., X, be iid with finite mean p and variance o2, and let
Mn = (X1 +...+ Xu)/n. Then

P(IMn —pl > €) < —
ne
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(b) (5 points) Now, the marketing department wants to make a web site that allows cus-
tomers to input the parameters of their intended deployment, and then outputs the result
of applying h to that situation to predict the Dynamo’s lifetime. They call to ask you what
kind of claim it can make about the reliability your predictions!

In particular, they want to say that, 99 times out of 100, the prediction is within some & of
the true lifetime. Assuming that the standard deviation of the distribution of the prediction
error is oery = 10, what is the smallest value of & you can responsibly claim? (It is fine to
assume that the mean prediction error is 0.)

Here’s the basic version of Chebychev’s inequality (you should be able to figure out the
relationship between this and the previous version), which you might find helpful.

Proposition: Let X be a random variable with finite mean p and variance o2. Then

1

P(IX —pl = ko) < 2

Is the standard deviation of the prediction error the same as the standard error (described
in lecture 7)? Explain.

(c) (5 points) Thinking back, you wonder what would have happened if you had changed
the percentage of your data you used for training vs testing. Qualitatively, how would you
expect your answers to the previous two questions to change, if you had used 50% of your
data for training and 50% for validation, compared to your original setup, where 90% of
the data was used for training and 10% for validation?

(d) (0 points) (Alternative to a,b,c (15 points): interesting if you like statstics!) Equation 2 of
the paper Multivariate Chebyshev Inequality with Estimated Mean and Variance by Stellato,
Van Parys, and Goulart, https://mitsloan.mit.edu/shared/ods/documents?PublicationDocumentID=4759
contains a bound (due to Saw et al) on the error of using the sample mean as a prediction
for the n + 1st value, as a function of the sample mean, sample standard deviation, and
sample size. This is pretty cool! Play with it and see if you can use it to estimate an error
of your next prediction, given a sample mean of 50 and sample standard deviation of 10.
You might need to increase n to get a reasonable bound.

4 Why not regression? [10 points]

4. Jan is trying to do classification: y(\) € {0,1} and x(!) € R. But he slept through all of the
classification lectures, so he decides to solve classification using regression. That is, he ignores
the fact that y(V) is binary, and fits a linear regression function via least squares. The resulting
regression function is:

7 =f(x;w) =wp + xwy

Jan uses the decision rule: label 1 if f(x; w) > 1/2; and label 0 otherwise.

Suppose the training data is linearly separable. Is Jan’s decision rule (with associated regres-
sion function) guaranteed to classify the training data without error?

1. Yes. Provide a short argument:
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2.

S

No. Provide a counterexample:

Modeling the distribution versus training a classifier [15 points]

5. (Murphy 10.3)

Suppose we train the following binary classifiers via maximum likelihood.

(@

(b)

()
(d

Gaussl: A generative classifier, where the class conditional densities are Gaussian, with
both covariance matrices set to I (identity matrix), i.e., p(x |y = ¢) = N(x | pn,I). We
assume p(y) is uniform.

GaussX: as for Gaussl, but the covariance matrices are unconstrained, i.e., p(x |y =c¢) =
Nx | pe, Ze).

LinLog: A logistic regression model with linear features.

QuadLog: A logistic regression model, using linear and quadratic features (i.e., polyno-
mial basis function expansion of degree 2).

After training we compute the performance of each model M on the training set as follows:

1 o Do) A
LM) =3 logp(y™ Ix!V,8,M)
i=1

Note that this is the conditional log-likelihood p(y | x, 8, M) and not joint log-likelihood p(y, x |
6, M). We now want to compare the performance of each model. We will write L(M) < L(M/)
if model M must have lower or equal log likelihood on the training set than M’, for any training
set (in other words, M is worse than M’, at least as far as training set logprob is concerned). For
each of the following model pairs, state whether L(M) < L(M’),L(M) > L(M’), or whether
no such statement can be made (i.e., M might sometimes be better than M’ and sometimes
worse); also, for each question, briefly (1-2 sentences) explain why.

(a)
(b)
(©)
@
(e)

(3 points) Gaussl, LinLog

(3 points) GaussX, QuadlLog
(3 points) LinLog, QuadLog
(3 points) Gaussl, QuadLog

(3 points) Now suppose we measure performance in terms of the average misclassifica-
tion rate on the training set:

where {j(x(V)) is the predicted y for x(1). Is it true in general that L(M) > L(M’) implies
that R(M) < R(M')? Explain why or why not.
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6 Naive Bayes Classification [15 points]

Consider a K-class classification problem where the input vector x = (x1,x2,...,Xpm) consists
of M binary components, where each x; € {0, 1}, and the output y is a one-hot vector of length
K, encoding the class label.

Consider the following generative model:

* The probability of y is given by p(y = k) for each class k, and _K_, p(y = k) = 1.

* The features x; are conditionally independent given the class y, so the joint probability
can be factorized as:

M
p(x,y) =p) [ [ptxily)
i=1

This represents an example of the naive Bayes model. Assuming you have access to labeled
training data, we can use Maximum Likelihood Estimation (MLE) to estimate the parameters:

* The prior probability estimate is p(y = k) = %, where Ny is the number of training
examples that belong to class k and N is the total number of training examples.

* The MLE estimate for the conditional probability is p(x; =1 |y = k) = NN—T, where Ny;
is the number of examples in class k where x; = 1, and Ny is the number of examples in

class k.

(a) (5 points) Suppose we are given a new binary feature vector x = (x1,x2,...,xXm), and
we want to predict the class label. The prediction is made using the posterior probability
p(y = k| x). Show that the posterior probability can be written in the form:

exp(ay)

ply=k|x) = cr—

Zj:l exp(aj)
where
ay =logp(x,y =k)

(b) (10 points) Show that ay is a linear function of the components of x.

7 Optimizing logistic regression [15 points]

6. In this problem, suppose you were hypothetically provided with a classification dataset dataset.csv
for binary classification. Suppose the file dataset.csv contains a matrix of size 1672 x 65, where
the last column of the matrix is the class label. Thus, the data matrix X is of dimension n x d,
where n = 1672 and d = 64 (Remark: The digits are 8 x 8 pixel images that have been turned
into vectors of length 64), and the label vector y € {0, 1}™ is the last (hence, 65™) column.

We will use this data with regularized logistic regression that has the objective function:

1 & A
R(w) := ;Zﬁi(WHi”W”%f (1)
i=1
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where {;(w) := log(1 + e_UiWTXi) and r(w) is the regularizer. Note: expects y; € {—1,1}.
Moreover, we have designed the dataset to be linearly separable, so actually a loss value close
to 0 should be achievable empirically (which corresponds to 100% training accuracy) when
A = 0 is used.

In this question, we will recall gradient descent (GD) and stochastic gradient descent (SGD)
for optimizing the regularized loss function with the choice A > 0.

(a) (5 points) Provide an expression for the gradient of the objective function, i.e., an expres-
sion for VR(w).

(b) (5 points) In SGD, we use a stochastic gradient g(w) instead of VR(w). We compute g(w)
by selecting a batch of b data points {x'1,...,x'*}, where each ij is sampled uniformly with
replacement from {1,2,...,n}, and each xY is the corresponding row from the data matrix
X. Provide an expression for the resulting (mini-batch) stochastic gradient .

(c) (5 points) Show that the gradient you derived above is unbiased, i.e., E[g(w)] = VR(w),
where the expectation is computed over the randomness of the batch.

8 Softmax [20 points]

An approach to multi-class classification is to use a generalized version of the logistic model.
Let x = [x1,X2,...,xq] be an input vector, and suppose we would like to classify into k classes;
that is, the output y can take a value in 1,...,k. The softmax generalization of the logistic
model uses k(d + 1) parameters 0 = (0i;),i=1,...,k,j =0,...,d, which define the following
k intermediate values:

z1 = 0O+ Z elej
j

Zi = eio + Z Ginj
j

zZr = Oro+ Z eij)'

)

The classification probabilities under the softmax model are:

ext
Z};l e

(a) (5 points) Show that when k = 2 the softmax model reduces to the logistic regression
model. That is, show how both give rise to the same classification probabilities Pr(y | x).
Do this by constructing an explicit transformation between the parameters: for any given
set of 2(d + 1) softmax parameters, show an equivalent set of (d + 1) logistic parameters.

Prly=1i|x;0) =

Hint: you can write the posterior of the logistic model given its parameter 6’, and find the relationship
between 6’ and 6
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(b) (5 points) What type of decision boundary is possible for a softmax model? (e.g. linear,
quadratic etc.)

(c) (10 points) A stochastic gradient ascent learning rule for softmax is given by:

0
045 < 0y5 + ocZ 30 logPr(yt | x4 0) ,
t Y

where (x',y') are the training examples. We would like to rewrite this rule as a delta
rule. In a delta rule the update is specified as a function of the difference between the
target and the prediction. In our case, our target for each example will actually be a vector
y' = (y},...,yL) where y} = 1if y* = i and 0 otherwise.

Our prediction will be a corresponding vector of probabilities:

gt = (Pr(y =1x%6),...,Pr(y =k [x"0))

Calculate the derivative above (i.e. %ﬁ log Pr(y* | x*;0)) and rewrite the update rule as
a function of y —

[Hint: it might be helpful to calculate aaggj ]

(Hint: it might be helpful to consider two cases: y =1and y #1i )
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