
6.790 Homework 1

Sept 10, 2024

Questions 1–3 are relatively stand-alone warm-ups. Questions 4–6 are more extended practice
and illustrations of the ideas of this material. Question 7 requires coding. Do not submit your code!

There are some rhetorical questions in blue boxes. You don’t need to answer them—they’re
just for thinking about.

Please hand in your work via Gradescope via the link at https://gradml.mit.edu/info/homeworks/.
If you were not added to the course automatically, please use Entry Code R7RGGX to add yourself
to Gradescope.

1. Latex is not required, but if you are hand-writing your solutions, please write clearly and
carefully. You should include enough work to show how you derived your answers, but
you don’t have to give careful proofs.

2. Homework is due on Tuesday September 17 at 11PM.

3. Lateness and extension policies are described at https://gradml.mit.edu/info/class_policy/.
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Solution: Don’t look at the solutions until you have tried your absolute hardest to solve the
problems. This is especially true for optional problems that you didn’t work on—it’s a good
idea to come back to them when studying for exams.

1 Normal fish [10 Points]

1.1 Fish tale

(Bishop 1.11) We find ourselves with a data set consisting of the measured weights of a bunch of
fish caught during an afternoon of fishing. We decide to model the distribution of these weights
using a Gaussian distribution.
Why might this not be a great modeling choice?

Solution:
Maybe they come from different species, so we could expect the distribution to be multi-modal. Also, the
Gaussian has infinite tails, so it will assign positive probability to fish with negative weight.

Our goal is to select parameters µ,σ2 of the Gaussian distribution in order to maximize the
likelihood of our data, D = {x(1), . . . , x(n)}. The parameters that maximize the log likelihood of
the data, will also maximize the likelihood (due to its monotonicity) and the form is easier to deal
with. Recall that the pdf of a Gaussian distribution is given by

pX(x | µ,σ2) =
1√
2πσ

exp{−
1

2σ2 (x− µ)2} .

If we assume that the process whereby we caught the fish made their weights independent and
identically distributed, then

p(D | µ,σ2) =
∏
i

pX(x
(i) | µ,σ2) .

The log likelihood function is then

logp(D | µ,σ2) = −
1

2σ2

N∑
i=1

(x(i) − µ)2 −
N

2
logσ2 −

N

2
log(2π) .

By setting its derivatives with respect to µ and σ2 equal to zero and solving , verify that the maxi-
mum likelihood estimates of µ and σ are given by

µml =
1
N

N∑
n=1

x(n)

σ2
ml =

1
N

N∑
n=1

(x(n) − µml)
2
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.
Under what assumptions about the log likelihood function is this a valid approach for finding

a global maximum?
This solution may be different than the estimator you have previously seen for σ2. See the discussion at the bot-
tom of Bishop page 27 for an explanation.

Solution: Taking the partial derivatives of the log likelihood with respect to µ and σ2 results
in

∂ log Pr(x | µ,σ2)

∂µ
=

1
σ2

N∑
n=1

(x(n) − µ)

∂ log Pr(x | µ,σ2)

∂σ2 =
1

2(σ2)2

N∑
n=1

(x(n) − µ)2 −
N

2σ2

Setting the partial derivative with respect to µ to 0 gives

0 =
1
σ2

N∑
n=1

(x(n) − µ) =
1
σ2

N∑
n=1

x(n) −
1
σ2

N∑
n=1

µ =
1
σ2

N∑
n=1

x(n) −
1
σ2Nµ

so

µ =
1
N

N∑
n=1

x(n)

For the Gaussian, we are fortunate that our estimate for the mean is independent of the
variance.

Setting the partial derivative with respect to σ2 (note – not σ) to 0 gives

0 =
1

2(σ2)2

N∑
n=1

(x(n) − µ)2 −
N

2σ2

N

2σ2 =
1

2(σ2)2

N∑
n=1

(x(n) − µ)2

so

σ2 =
1
N

N∑
n=1

(x(n) − µ)2

We can relate this quantity back to by replacing µ with µml found above, since as we no-
ticed, the µml does not depend on the variance.

We are finding a value for θ, the parameter to be estimated (here, (µ,σ2)), such that ∇θL(θ) =

0 where L is the loss function to be minimized (here, − logp). From calculus class, we know
that this is a necessary condition of θ being a local extremum of L : U → R (where U is an
open subset of Rn). If the loss function L is convex, this is also a sufficient condition of θ being
a global minimum of L.
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1.2 A simple model

As it happens, we caught 6 mega-guppies (a tasty type of fish), with these weights:

D0 = {0.9, 1, 1.1, 1.2, 3, 3.1} .

We looked in the USDA handbook which told us that the variance of the weight of North American
mega-guppies is σ2 = 0.52 = 0.25.

Find the maximum likelihood value of µml for D0 under this assumption. What is the data
likelihood p(D0|µml)?

Solution:
µml = 1.71666

p(D0 | µml) = 5.387577e− 06

log(p(D0 | µml)) = −12.131415

1.3 A more complex model

Now, what if we ignore the USDA value of σ2 and decide to estimate it ourselves? Find the
maximum likelihood estimates µml and σ2

ml of µ and σ2 for our data set D0. What is the data
likelihood p(D0|µml,σ2

ml)?
What are the advantages and disadvantages of this model versus the one with the fixed vari-

ance?

Solution:
µml = 1.716666

σ2
ml = 0.898055

p(D0 | µml,σml) = 0.000277

log(p(D0 | µml,σml)) = −8.191061

This new model fits the data better. But it might be that it would have been better to use the
other variance because it was based on a larger sample. But it might have been better to use
our estimate because the local population of fish has a different distribution. We will spend a
lot of time in class thinking about how to make trade-offs like this. The problem is called model
selection.

2 Parameter estimation [10 points]

2.1 Force field

A supervillain has our hero trapped in an invisible one-dimensional force-field (hero can only
move in one dimension) and we know that the field has finite extent. Using a drone flying over-
head, we make several measurements of the hero’s position.
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We wish to estimate the boundaries of the force-field given samples of the hero’s position.
If we knew that our data are drawn uniformly from a finite interval, [a,b], then we might want

to find aml,bml to maximize the likelihood of D.
For our data set D = (x(1), x(2), . . . , x(n)), what are the maximum likelihood parameter esti-

mates aml and bml? What is the data likelihood p(D|aml,bml)?
Is this model of the hero data a good one? Why or why not?

Solution:
It might not be good if we have reason to think that for the hero, some parts of the force field are more
interesting or comfortable than others. Also, if we are sampling positions finely in time, they will be very
highly correlated with one another (not iid).

Solution:
The likelihood of the data is:

n∏
i=1

{
(bml − aml)

−1 if aml ⩽ xi ⩽ bml

0 otherwise

We can see that if aml > xi or bml < xi, for any xi, then the likelihood of the whole data
set must be 0. So, we should pick bml to be as small as possible subject to the constraint that
bml ⩾ xi, which means bml = maxi xi. Similarly, aml = mini x

i.
For D0 = {0.9, 1, 1.1, 1.2, 3, 3.1} (the data from the previous question):

aml = 0.9 bml = 3.1

p(D0 | aml,bml) = 0.008820

log(p(D0 | aml,bml)) = −4.730744

2.2 Pigeons

Pigeons1, when put in a situation where Pr(y = 1) = p and Pr(y = 0) = 1 − p, will select option
1 with probability p and option 0 with probability 1 − p. What is the expected 0-1 loss for the
pigeons’ decision rule? What is the optimal decision rule and its expected loss?

Actually, people2 do this too!

1“Probability-Matching in the Pigeon”, Donald H. Bullock and M. E. Bitterman, The American Journal of Psychology ,
Vol. 75, No. 4 (Dec., 1962), pp. 634-639

2“Banking on a Bad Bet: Probability Matching in Risky Choice is Linked to Expectation Generation,” Psychological
Science, Vol. 22, No. 6 (2011).
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Solution: The loss is 0 when the pigeon’s random choice g agrees with the independent draw
from the underlying distribution y. So, the loss is:

1 − (Pr(g = 0)Pr(y = 0) + Pr(g = 1)Pr(y = 1))

Recalling that Pr(g = 1) = Pr(y = 1) = p, we have that loss is

2p(1 − p)

Note that we saw that the optimal decision rule is to pick the mode and that the loss of that
rule is:

1 −max(p, (1 − p))

Note that for p = 0.5 the losses are the same. But, for other values, say p = 0.6, the pigeons’
loss is 0.48 and the optimal loss is 0.4. Proving that pigeons are not so good at decision theory.

3 Bayesian belief update [10 Points]

3.1 Beta-Binomial practice

(a) Label which of the lines in the figure below correspond to:

1. Beta(0.1, 0.1)

2. Beta(1,1)

3. Beta(2,2)

Solution:

1. Beta(0.1, 0.1) is blue

2. Beta(1,1) is red

3. Beta(2,2) is green

We are estimating the probability that a coin comes up heads.



MIT 6.867 Fall 2024 8

(b) What does it mean to have a prior of Beta(2, 2)?

Solution: Before seeing any data, we believe that the distribution for the parameter µ of a
binomial random variable, which describes the numbers of heads and tails, is distributed
as Beta(µ; 2, 2). This is as if we had previously seen 2 heads and 2 tails.

(c) If that’s the prior, what is the posterior after seeing 3 heads and 2 tails?

Solution: The posterior is Beta(µ; 5, 4)

(d) What are the mean and mode of that posterior?

Solution: The mean is 5/9; the mode is 4/7. Note that without a prior, we would have
had µml = 3/5 which is a more “extreme” value than both the mean and the mode of the
posterior distribution. The impact of the extra “head” observation is moderated by the
prior.

(e) What does it mean to have a prior of Beta(2, 3)?

Solution: It’s as if we had previously seen 2 heads and 3 tails, starting with a uniform
prior on µ.

(f) If that’s the prior, what is the posterior after seeing 3 heads and 2 tails?

Solution: The posterior is Beta(µ; 5, 5)

(g) What are the mean and mode of that posterior?

Solution: The mean is 1/2; the mode is 1/2.

3.2 What’s new?

(Bishop 2.7) Consider a bernoulli random variable x with mean µ with prior distribution for µ

given by the beta distribution:

Beta(µ;a,b) =
Γ(a+ b)

Γ(a)Γ(b)
µa−1(1 − µ)b−1 (2.13)

and suppose we have observed m occurrences of x = 1 and l occurrences of x = 0. Show that the
posterior mean value of µ lies between the prior mean and the maximum likelihood estimate for
µ.
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To do this, show that the posterior mean can be written as λ times the prior mean plus (1 −

λ) times the maximum likelihood estimate, where 0 ⩽ λ ⩽ 1. This illustrates the concept of
the posterior distribution being a compromise between the prior distribution and the maximum
likelihood solution.

Solution: We will show that

E[µ|D] = λE[µ] + (1 − λ)µml

using a beta distribution for the prior.
So,

E[µ] =
a

a+ b
(using 2.15)

E[µ|D] = p(µ|m, l;a,b) =
m+ a

m+ a+ l+ b
(using 2.20)

µml =
m

m+ l
(using 2.8)

Therefore,

m+ a

m+ a+ l+ b
= λ

a

a+ b
+ (1 − λ)

m

m+ l

λ =

(
m+ a

m+ a+ l+ b
−

m

m+ l

)
(a+ b)(m+ l)

a(m+ l) −m(a+ b)

λ =
(a+ b)

m+ a+ l+ b
=

1
1 + m+l

a+b

Because a,b,m and l are positive, λ ∈ (0, 1)

4 Which dice factory? [15 points]

You have just purchased a two-sided die, which can come up either 1 or 2:

You want to use your crazy die in some betting games with friends later this evening, but first
you want to know the probability that it will roll a 1.

You know it came either from factory 0 or factory 1, but not which.
Factory 0 produces dice that roll a 1 with probability ϕ0. Factory 1 produces dice that roll a 1

with probability ϕ1. You believe initially that with probability η0 that it came from factory 1.
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(a) Without seeing any rolls of this die, what would be your predicted probability that it would
roll at 1?

Solution: Define θ as a binary random variable which is one if the die came from factory 0
and Y as the random variable associated with a dice roll. Then by conditional probability,
we have

Pr(Y = 1) = Pr(Y = 1|θ = 0)Pr(θ = 0) + Pr(Y = 1|θ = 1)Pr(θ = 1)

= ϕ0(1 − η0) + ϕ1η0

(b) If we roll the die and observe the outcome, what can we infer about where the coin was
manufactured?

Solution: Having observed an outcome y, we can apply Bayes’ rule.

Pr(θ = 1 | Y = y) =
Pr(y | θ = 1)Pr(θ = 1)

Pr(y)

=
ϕ
y
1 (1 − ϕ1)

1−yη0

ϕ
y
0 (1 − ϕ0)1−y(1 − η0) + ϕ

y
1 (1 − ϕ1)1−yη0

η1 = g(η0,y)

In the second equality, we used exponentiation as a way to select amongst the two possible choices in
general. It doesn’t always come out so cleanly.

So, η1 are the parameters of the posterior.

(c) More concretely, let’s assume that:

• ϕ0 = 1: dice from factor 0 always roll a 1
• ϕ1 = 0.5: dice from factory 1 are fair (roll at 1 with probability 0.5)
• η0 = 0.7: we think with probability 0.7 that this die came from factory 1

Now we roll it, and it comes up 1! What is your posterior distribution on which factory it
came from? What is your predictive distribution on the value of the next roll?

Solution:
η1 =

0.5 · 0.7
0.5 · 0.7 + 1 · 0.3

≈ 0.54

The predictive distribution over the next roll is

Pr(Y = 1) = η1ϕ1 + (1 − η1)ϕ0 ≈ 0.71
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(d) You roll it again, and it comes up 1 again.

Now, what is your posterior distribution on which factory it came from? What is your pre-
dictive distribution on the value of the next roll?

Solution: The update is the same, but starting from the posterior we had before.

η2 =
0.5 · 0.54

0.5 · 0.54 + 1 · 0.46
≈ 0.37

(e) Instead, what if it rolls a 2 on the second roll?

Solution: We know for sure where this coin came from!

η2 =
0.5 · 0.54

0.5 · 0.54 + 0 · 0.46
= 1 .

(f) In the general case (not using the numerical values we have been using) prove that if you have
two observations, and you use them to update your prior in two steps (first conditioning on
one observation and then conditioning on the second), that no matter which order you do the
updates in you will get the same result.

Solution: Let us denote our 2 observations by ya,yb. Next, observe that Pr(ya,yb|θ =

α) = Pr(ya|θ = α)Pr(yb|θ = α), this follows from the fact that the rolls are independent
given we know factory, and since Pr(ya,yb) =

∑
α Pr(ya|θ = α)Pr(yb|θ = α)Pr(θ =

α) =
∑

α Pr(yb|θ = α)Pr(ya|θ = α)Pr(θ = α) =
∑

α Pr(yb,ya|θ = α)Pr(θ = α), we
have that Pr(ya,yb) = Pr(yb,ya). Thus, the probability of observing ya,yb does not
change with the order in which they appear. By Bayes’ Rule, Pr(θ = α|ya,yb) can be
rewritten as,

Pr(θ = α|ya,yb) =
Pr(ya,yb|θ = α)Pr(θ = α)

Pr(ya,yb)

=
Pr(ya|θ = α)Pr(yb|θ = α)Pr(θ = α)

Pr(yb,ya)

=
Pr(yb,ya|θ = α)Pr(θ = α)

Pr(yb,ya)

= Pr(θ = α|yb,ya)

5 Emergency Room [15 Points]

You are a young doctor, working off your federal medical school tuition grant in southern North
Dakota. It’s your fourth day on the job. You are all alone in the emergency room (ER) when Pat
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comes in complaining of chest pain.
You have to predict whether Pat is having a heart attack (H) or indigestion (I). Your loss func-

tion is:

L(g,a) =


0 if g = a

1 if g ="H" and a ="I"

10 if g ="I" and a ="H"

You have seen three previous patients who exhibited chest pain, none of whom were actually
having a heart attack.
(a) You use those three data points to make a point estimate of the probability that Pat is having

a heart attack and then use it to make the prediction that minimizes the empirical risk. What
do you predict? What is the empirical risk of that prediction?

Do you think the empirical risk of this predictor is a good measure of how useful it will be?

Solution: First we begin by estimating the maximum likelihood estimate (MLE) of the
Binomial distribution.

Recall that the binomial distributed random variable Y with n total draws and a proba-
bility p of success has the probability mass function (PMF)

P(Y = y|n,p) =
(
n

y

)
py(1 − p)n−y.

In our case, we have that y = 3, n = 3, so taking the log of the likelihood we observe that

log(P(Y = y|n,p)) = 3 log(p).

which increases monotonically with p, and therefore the MLE p̂ = 1.

Recall that the empirical risk of making a guess g is

1
3

3∑
i=1

L(ĝ,yi).

Now note that the risk of g = I is zero since we make zero mistakes if we had always
guessed indigestion, and the risk of g = H is 1, since we would have made an average of
one mistake per patient. Therefore the empirical risk minimizing decision is g = I with
risk zero.

This is a terrible decision for two reasons: first, it ignores our intuition that heart attacks
occur with probability greater than zero, and second, we would make this decision even
if mistaking heart attack for indigestion had an arbitrarily large (finite) loss. It should be
troubling that this decision completely ignores the loss function.

(b) The next morning, you think more carefully and decide it would be better to forget all your
previous experience and simply view each new patient with an open mind. So, you use some
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ideas from this week’s lectures. Let Q be a random variable representing the probability that
a random patient walking into your ER will be having a heart attack. You have a uniform
prior on Q.

What is the prediction that minimizes risk for a random patient walking into your ER? What
is the risk of that prediction?

Solution: Now we have a model where the probability of any patient having indigestion
is controlled by a random variable Q instead of a probability p. First we will write down
the probability that the next patient Y has indigestion.

P(a = ”I”|n = 1) =
∫ 1

0
P(a = ”I”|n = 1,p = p)P(Q = p)dp

=

∫ 1

0
pP(Q = p)dp

= E[Q]

For this problem, since Q is uniform, we have that P(a = “I ′′|n = 1) = E[Q] = 0.5.

Now that we have the probability that the next patient has indigestion a = “I ′′, we can
now calculate the risk as

Rg=H = E[L(H,a)] = P(a = I) = 0.5

Rg=I = E[L(I,a)] = 10 − 10P(a = I) = 5

So the optimal decision is now to guess g = H which gives risk 0.5.

(c) Later that afternoon, you figure it would be better to combine approaches. So, what if you
started with a uniform prior, but then observed three patients all of whom had indigestion?

What would be your posterior distribution on Q? What prediction should you make? What
is the risk (under the posterior distribution) of that prediction?

Solution: Following the same argument as part b, we will first derive the probability that
the next patient has indigestion. In this case, this requires us to calculate the posterior. For
clarity we write down all three parts of our update:

Prior: Q ∼ Unif(0, 1) = Beta(1, 1)

Likelihood: Y ∼ Binomial(3,Q)

Posterior: Q̂ ∼ Beta(Y + 1, 3 − Y + 1)

Since in our case, we hvae already observed that Y = 3, we know that the posterior is a
Beta(4, 1). Using identical arguments as part B, we derive the probability that a = ”I”
under the posterior distribution. This is called the posterior predictive distribution (since
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we are predicting the next data using our posterior).

P(a = ”I”|n = 1) =
∫ 1

0
P(a = ”I”|n = 1,p = p)P(Q = p)dp

=

∫ 1

0
pP(Q = p)dp

= E[Q]

= 4/5

Finally we obtain the risks as:

Rg=H = E[L(H,a)] = P(a = I) = 4/5

Rg=I = E[L(I,a)] = 10 − 10P(a = I) = 2

So the optimal decision is still to guess g = H which gives risk 4/5.

(d) That evening, really worried that you haven’t had enough experience in these matters, and
beginning to question your judgment about accepting this job, you decide to call your friend
Chris who is working at Mass General. Chris has seen 20 patients with indigestion and 1 with
heart attack. You use Chris’s experience to construct a prior distribution, and then update it
with your own (3 patients with indigestion).

What would be your posterior distribution on Q? What prediction should you make? What
is the risk (under the posterior distribution) of that prediction?

Solution: The difference between parts c and d is that the prior is no longer uniform.
Using Chris’ previous experience, we know that in the past there were 20 patients with
indigestion and 1 with heart attack, this corresponds to a prior distribution of Beta(20, 1)

If we believed that the distribution of Q was uniform before calling Chris, the proper prior would be
Beta(21, 2) rather than Beta(20, 1) since we would be updating a uniform prior with 20 indigestion and
1 heart attack observations. Here we are going to assume that we are truly ignorant of the distribution
of Q before calling Chris

Prior: Q ∼ Beta(20, 1)

Likelihood: Y ∼ Binomial(3,Q)

Posterior: Q̂ ∼ Beta(Y + 1, 3 − Y + 1)

Therefore using the same arguments as part c, the posterior is Beta(23, 1) and the risks are

Rg=H = E[L(H,a)] = P(a = I) = 23/24

Rg=I = E[L(I,a)] = 10 − 10P(a = I) = 10/24

Therefore we would select g = I giving risk 10/24
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The optimal decision between parts c and d are very different despite the fact that the observed data
(3 patients) are identical. In the case that we have little data, the optimal decision is often strongly
influenced by choice and construction of the prior

(e) At 2AM, questioning the meaning of life, you are quite sure that you should have become
a poet. You are so uncertain of your ability to make predictions that you call your former
professor who is the head of the emergency medicine department at Gotham City Hospital.
Herr Prof. Dr. Strangelove has seen 2000 patients with indigestion and 20 with heart attack.
You use Dr. Strangelove’s experience to construct a prior distribution, and then update it with
your own (3 patients with indigestion).

What would be your posterior distribution on Q? What prediction should you make? What
is the risk of that prediction?

Solution: Using the same argument, the posterior is Beta(2003, 20) giving risks of

Rg=H = E[L(H,a)] = P(a = I) = 2003/2024 ≈ 0.990

Rg=I = E[L(I,a)] = 10 − 10P(a = I) = 210/2024 ≈ 0.104

Therefore we would select g = I giving risk about 0.104.

Is there a potential problem with using Dr. Strangelove’s data to help construct your prior?

6 Abby Normal [15 Points]

Dr. Frahnkensteen is designing an artificial cranium, but she needs to know how big to make it;
her design goal is to be a good fit to 80% of brains. So, she wants to get a good estimate of the
distribution of the sizes of brains in the local population. Since brains are kind of squishy, we will
just consider the total volume of the brain, a one-dimensional quantity.

The Dr. has considerable previous experience with brains and thinks their distribution is well
modeled as a Gaussian distribution with with a variance of 75cc. But she’s not at all sure about
the mean of this current population. She thinks it might be somewhere around 1100cc.
(a) One way to express the Dr.’s uncertainty about the distribution of brain sizes in the local

population is to put a Gaussian distribution on the mean of the local distribution.

What are the hyper-parameters of this distribution? Pick some to model Dr. F’s situation
(they’re not completely determined by the story).

Solution: Data values are drawn from a Gaussian distribution with known variance, σ2
D,

but unknown mean. Assume a prior distribution on the mean, which is a Gaussian with
parameters µ0,σ2

0. So:

• θ ∈ R
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• y(i) ∈ R

• y(i) | θ ∼ Normal(θ,σ2
D)

• θ ∼ Normal(µ0,σ2
0)

(b) Dr. F. sends her assistant Eygor out to get a new brain from the local population. Eygor brings
back one that is 1500cc! What should the posterior be?

Start by solving this problem algebraically. Write down the prior and the observation likeli-
hood function symbolically. Then, derive a form for the posterior.

What actual numerical values do you get, given your answer to the previous question, and
the observation of 1500cc?

Solution: Assume we make a single observation y(1). What is the posterior?

Pr(θ | y(1)) ∝ Pr(y(1) | θ;σ2
D)Pr(θ;µ0,σ2

0)

∝ exp
(
−
(y(1) − θ)2

2σ2
D

)
exp

(
−
(θ− µ0)

2

2σ2
0

)
∝ exp

(
−θ2

(
1

2σ2
D

+
1

2σ2
0

)
+ 2θ

(
y(1)

2σ2
D

+
µ0

2σ2
0

))
∝ exp

(
−
(θ− µ1)

2

2σ2
1

)
where

µ1 =
σ2
Dµ0 + σ2

0y
(1)

σ2
D + σ2

0
,

which is a weighted average of the prior mean and the data, and

σ2
1 =

σ2
0σ

2
D

σ2
0 + σ2

D

.

The third proportionality constant comes from the fact in this case the random variable is
θ, meanwhile we know y(1), and therefore is a constant.
Note that the new variance is less than the prior variance and less than the variance of the
observation. So, we can conclude that

θ | y(1) ∼ Normal(µ1,σ1) .

(c) How is the new mean related to the old mean and the observation?
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Solution: Rewriting the previous solution in terms of the inverse of the variance (called
the precision),

µ1 =

µ0
σ2

0
+ y(1)

σ2
D

1
σ2
D

+ 1
σ2

0

.

This immediately shows that the posterior mean is a the average of the prior mean weighted
by 1/σ2

0 and the observation weighted by 1/σ2
D.

(d) What can we say about how the variance behaves when an observation is made?

Solution: Once again re-writing in terms of precisions,

1
σ2

1
=

1
σ2

0
+

1
σ2
D

which indiates that the precision is always increasing with more observations, and the
variance decreasing.

(e) What is Dr. F’s. posterior predictive distribution? First find it symbolically, then numerically.

Solution: Another important question in this case is, what is the posterior predictive distri-
bution?? It is

Pr(y(n+1) | D) =

∫
θ

Pr(y(n+1) | θ)Pr(θ | D)dθ

=

∫
θ

Pr(y(n+1) | θ)Pr(θ | µn,σn)dθ

= N(y(n+1);µn,σ2
n + σ2

D)

One way to derive this is with a lot of hassling with the integral and the quadratic stuff
in the exponent. Another (thanks to a paper by Murphy) is to make the following obser-
vations:

• θ | D ∼ Normal(µn,σ2
n)

• y(n+1) | θ ∼ Normal(θ,σ2
D)

• y(n+1) − θ ∼ Normal(0,σ2
D)

First note that the quantity y(n+1) − θ is conditionally independent of θ (think of Y = Z
+ W, where Z and W are gaussians). We can see y(n+1) | D as a sum of (y(n+1) − θ) | D

and θ | D. The sum of two Gaussian random variables is also a Gaussian, where the new
mean is the sum of the means and the new variance is the sum of the variances. So,

y(n+1) | D ∼ Normal(µn,σ2
D + σ2

n)
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(f) If Eygor brought back 10 more brains from the local morgue, would Dr. F. be able to update
her prior in some way that is more efficient than doing the individual update procedure 10
times?

Solution: As parts c and d show, the posterior updates are sums and weighted means of
the precision, so given 10 individuals, we would simply take the weighted mean as:

µ11 =

µ0
σ2

0
+
∑10

i=1
y(i)

σ2
D

10
σ2
D

+ 1
σ2

0

.

and
1
σ2

11
=

1
σ2

0
+

10
σ2
D

7 Coding Question: Two Gaussians [25 Points]

We saw in lecture that if we know p(X, Y) then we can derive an optimal decision rule, but we
were sad to realize that we never really know p(X, Y). One strategy for addressing this problem
is to directly estimate p(X, Y) and then use the estimate to derive a decision rule that would be
optimal if our estimate were accurate.

In this question we consider a generative model for a dataset comprised of a mixture of two
gaussians. The data is generated as follows. Let C0 = N(µ0,Σ0) and C1 = N(µ1,Σ1) be two
gaussians where µ0 and µ1 ∈ Rd are the means and Σ0 and Σ1 ∈ Rd×d are two covariances. Let
y ∈ {0, 1} be a latent variable indicating if x is drawn from C0 or C1. The probability density of x is
defined as follows

P(x) = P(x|y = 1)P(y = 1) + P(x|y = 0)P(y = 0) (1)

Our goal is to derive and implement the bayes optimal classifier δ such that given a new point
x ′ ∈ Rd,

δ(x ′) = arg max
y∈{0,1}

P(x ′|y) (2)

We have provided two csv files train.csv and test.csv for the completion of this question.
(a) (Empirics) From train.csv, what is your maximum likelihood estimate for P(y = 0) and P(y =

1)? What is your estimate for µ0 and µ1? What is your estimate for Σ0 and Σ1? Do you notice
something about Σ0 and Σ1? (Hint: Don’t overthink)

Solution: P(y = 0) = 1/3 and P(y = 1) = 2/3. µ0 = (0, 0) and µ1 = (5, 0). Σ0 = Σ1 = I

(b) (Theory) What are P(y = 1|x) and P(y = 0|x) proportional to, as a function of x?
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Solution: We apply bayes rule

P(y = 1|x) =
P(x|y = 1)P(y = 1)

P(x)
∝ P(x|y = 1)P(y = 1) (3)

We drop the P(x) in the denominator as it does not depend on y The density is then
proportional to

P(y = 1|x) ∝ exp((x− µ1)
TΣ1(x− µ1))P(y = 1) (4)

and analogously for y = 0

P(y = 0|x) ∝ exp((x− µ0)
TΣ0(x− µ0))P(y = 0) (5)

(c) (Theory) Derive an equation for the decision boundary for x ∈ Rd where

ln(P(y = 1|x)) = ln(P(y = 0|x)) (6)

Here we compare the log likelihood as it simplifies the derivation. Is this decision boundary
(as a function of x) linear, quadratic, etc.? How does the decision boundary simplify when
Σ0 = Σ1?

Solution: Taking the log of P(y = 1|x) and P(y = 0|x) and set them equal

(x− µ1)
TΣ1(x− µ1) + ln(P(y = 1)) = (x− µ0)

TΣ0(x− µ0) + ln(P(y = 0)) (7)

This is a quadratic in x. For Σ = Σ1 = Σ2 we have

−2xTΣµ1 + µ1Σµ1 + ln(P(y = 1)) = −2xTΣµ0 + µ0Σµ0 + ln(P(y = 0)) (8)

which is linear in x.

(d) (Empirics) Using the decision boundary derived in part (c), classify the points in test.csv as
y = 0 or 1. It suffices to write down the form of the decision boundary and associated decision
rule.

Solution: Let x = (xa, xb) ∈ R2 Decision boundary is y = 0 when

ln(1/3) > −10xa + 25 + ln(2/3) (9)

rearranging we obtain
xa > 0.1(25 + ln(2/3) − ln(1/3)) (10)

In particular, the decision boundary is NOT xa = 2.5 because of the prior.
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8 Optional

8.1 Throwing rocks: asymmetric loss

You just bought a new trebuchet and you are interested in making predictions about how far it can
throw a rock. Your ballistics officer tells you that optimizing the squared error of your predictions
is not appropriate for the problem. If your prediction is within some constant c of the true value
then they can use your predicted value to aim the trebuchet such that it hits the castle, but if your
prediction off by more than c, then using the prediction for aiming will cause the trebuchet to
miss. However, the fact is, it’s better for your prediction to be too short than too far.

So, we will let

L(a,g) =


0 if |a− g| < c

1 if a− g > c

2 if g− a > c

If you know that the range of the ball for these types of trebuchets is distributed as a Gaussian
with mean µ and variance σ2, what prediction minimizes loss L?

(This is a little bit tricky. It’s fine to just write out an expression in terms of c, µ, and σ2. )

Solution: The expected loss is

E[L(a,g)] =

∫∞
−∞ L(a, x)p(x;µ,σ2)dx = 2ϕ(a + c;µ,σ2) + ϕ̂(a − c;µ,σ2) (11)

Where ϕ(x;µ,σ2) =
∫∞
x yp(y;µ,σ2)dy and ϕ̂(x;µ,σ2) =

∫x
−∞ yp(y;µ,σ2)dy . For sake of

checking solutions, it’s convenient to express everything in terms of the cdf of standard normal

2(1 − erf(
a+ c− µ

σ
)) + erf(

a− c− µ

σ
) (12)

Alternative solution. The best prediction is the one that minimizes the expected loss over
the randomness in a:

ĝ = arg min
g

Ea[L(a,g)]

= arg min
g

∫
a

L(a,g)p(a)da

= arg min
g

∫∞
−∞ L(a,g)N(a|µ,σ2)da

= arg min
g

∫g−c

−∞ L(a,g)N(a|µ,σ2)da+

∫g+c

g−c

L(a,g)N(a|µ,σ2)da+

∫∞
g+c

L(a,g)N(a|µ,σ2)da

Note that we intentionally divided up the integral so that we can easily plug in values for
L(a,g). In the first integral, we have that the prediction is too far, and in the last integral, the
prediction is too short:
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= arg min
g

∫g−c

−∞ 2N(a|µ,σ2)da+

∫∞
g+c

N(a|µ,σ2)da. (13)

We can now solve the optimization problem:

0 =
1
dg

[ ∫g−c

−∞ 2N(a|µ,σ2)da+

∫∞
g+c

N(a|µ,σ2)da

]
= 2N(g− c|µ,σ2) −N(g+ c|µ,σ2)

which we see simplifies nicely by the fundamental theorem of calculus. We now solve for
g:

2N(g− c|µ,σ2) = N(g+ c|µ,σ2)

2 exp

(
−

(g− c− µ)2

2σ2

)
= exp

(
−

(g+ c− µ)2

2σ2

)
We can take log of both sides and do some algebra to get the final answer:

g =
−σ2 ln(2)

2c
+ µ.

Intuitively, this makes sense. We slightly under-predict the mean because of our biased
loss function.

8.2 Copy that: discrete Bayes update and decision theory

You have just bought a copy machine at a garage sale. You know it is one of two possible models,
m1 or m2, but the tag has fallen off, so you’re not sure which.

You do know that m1 machines have a 0.1 “error” (bad copy) rate and m2 machines have a 0.2
error rate.
(a) You use your machine to make 1000 copies, and 140 of them are bad. What is the maximum

likelihood estimate of the machine’s error rate? Explain why. (Remember that you’re sure it’s
one of those two types of machines).

Solution: We first solve the MLE of the type of the machine, which we denote by b ∈
{1, 2}. Using a particular machine, the number of bad copies, denoted by k, is a random
variable, as k ∼ Binomial(n,pb). Thus,

Pr(k | b) =

(
n

k

)
pk
b(1 − pb)

n−k ⇒ log Pr(k | b) = logC+ k logpb + (n− k) log(1 − pb).
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Here, C is the value of n choose k. With n = 1000, k = 140, p1 = 0.1 and p2 = 0.2, we have

log Pr(k | b = 1) = logC+ 140 log(0.1) + 860 log(0.9) = logC− 412.97

log Pr(k | b = 2) = logC+ 140 log(0.2) + 860 log(0.8) = logC− 417.22

We can see that log Pr(k | b = 1) > log Pr(k | b = 2), which implies that the MLE of the
type of the machine is bml = 1. It follows that the machine’s error rate is pbml = 0.1.

(b) Looking more closely, you can see part of the label, and so you think that, just based on the
label it has a probability 0.2 of being an m1 type machine and a probability 0.8 of being an m2

type machine. If you take that to be your prior, and incorporate the data from part a, what is
your posterior distribution on the type of the machine?

Solution: Under the condition that the total number of copies that we made is n = 1000,
the posterior distribution of the type of the machine, denoted by b, is

Pr(b = 1 | k) =
Pr(k | b = 1)Pr(b = 1)

Pr(k | b = 1)Pr(b = 1) + Pr(k | b = 2)Pr(b = 2)
=

0.2

0.2 + 0.8 Pr(k|b=2)
Pr(k|b=1)

.

We note that log Pr(k | b = 2) − log Pr(k | b = 1) = −4.25. Hence

Pr(k | b = 2)
Pr(k | b = 1)

= exp(−4.25) = 0.0142.

As a result, we have

Pr(b = 1 | k) = 0.946, and Pr(b = 2 | k) = 0.054.

(c) Given that posterior, what is the probability that the next copy will be a failure?

Solution: Given the posterior, the predictive probability of the next copy being bad is

Pr(b = 1 | k)p1 + Pr(b = 2 | k)p2 = 0.946 · 0.1 + 0.054 · 0.2 = 0.1054.

where pi is the failure probability of machine type mi.

(d) You intend to sell this machine on the web. Because it’s used, you have to sell it with a
warranty. You can offer a gold or a silver warranty. If it has a gold warranty and the buyer
runs it for 1000 copies and gets more than 150 bad copies, then you are obliged to pay $1000
in damages; if it has a silver warranty, you have to pay damages if it generates more than 300
bad copies in 1000 copies. Your maximum reasonable asking price for a machine with a gold
warranty is $300; for a machine with a silver warranty, it is $100. You can assume the machine
will sell at these prices. What type of warranty should you offer on this machine?
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Solution: Let k = 140 denote the number of bad copies that we have observed, and k ′

denote the number of bad copies the machine will generate when the buyer runs it for
1000 new copies. The probability that k ′ > 150 is

Pr(k ′ > 150 | k) = Pr(k ′ > 150 | b = 1)Pr(b = 1 | k) + Pr(k ′ > 150 | b = 2)Pr(b = 2 | k).

When n = 1000, the binomial distribution is extremely peaky, with most probability mass
falling around np. Hence, Pr(k ′ > 150 | b = 1) ≃ 0, and Pr(k ′ > 150 | b = 2) ≃ 1. Hence
Pr(k ′ > 150 | k) ≃ Pr(b = 2 | k) = 0.054.

Similarly, we have

Pr(k ′ > 300 | k) = Pr(k ′ > 300 | b = 1)Pr(b = 1 | k)+Pr(k ′ > 300 | b = 2)Pr(b = 2 | k) ≃ 0.

Actually, using either machine, it is very unlikely to generate over 300 bad copies for 1000
runs.

Hence, the expected profit of offering gold warranty is

300 − 1000 · Pr(k ′ > 150 | k) ≃ 300 − 1000 · 0.054 = 246.

The expected profit of offering silver warranty is

100 − 1000 · Pr(k ′ > 300 | k) ≃ 100.

Therefore, offering gold warranty would generate higher expected profit, which is what
we should do.

(e) Under what conditions would it be better to just throw the machine away, rather than try to
sell it?

Solution: We should just throw it away when the expected profit is zero or even negative for
both warranties that we can offer.

For this particular problem, even for the worst case scenario where we are sure with
probability 1 that the machine is the worse one (with error rate 0.2), it is still very unlikely
that it produces over 300 bad copies for 1000 runs (you can verify this by computing the
CDF). In this (worst) case, it is still profitable to sell the machine with silver warranty.

8.3 Dirichlet Priors

Exercise borrowed from Stat180 at UCLA. See Bishop, sections 2.1 and 2.2 for background on Beta and
Dirichlet distributions.

The Dirichlet distribution is a multivariate version of the Beta distribution. When we have
a coin with two outcomes, we really only need a single parameter θ to model the probability of
heads. But now let’s consider a “thick” coin that has three possible outcomes: heads, tails, and
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edge. Now we need two parameters: θh is the probability of heads, θt is the probability of tails,
and then the probability of an edge is 1 − θh − θt.

The random variables (V ,W) ∈ [0, 1] and such that V + W ⩽ 1 have a Dirichlet distribution
with parameters α1,α2,α3 if their joint density is

f(v,w) = vα1−1wα2−1(1 − v−w)α3−1 Γ(α1 + α2 + α3)

Γ(α1)Γ(α2)Γ(α3)
.

This is a direct generalization of the Beta distribution. (Note that Γ refers to the Gamma function,
which is a generalization of factorial.)
(a) If (θh, θt) have a Dirichlet distribution as above, what is the marginal distribution of θh?

Solution: To find the marginal distribution of θh, we integrate the joint distribution over
θt:

f(θh) =
∫

f(θh, θt)dθt ∝
∫ 1−θh

0
θα1−1
h θα2−1

t (1 − θh − θt)
α3−1 dθt

= θα1−1
h

∫ 1−θh

0
θα2−1
t (1 − θh − θt)

α3−1 dθt

The integral looks similar to a beta function integral. Changing variables with u = θt

1−θh

and du = dθt

1−θh
:

f(θh) ∝ θα1−1
h (1 − θh)

α2+α3−1
∫ 1

0

(
θt

1 − θh

)α2−1(1 − θh − θt

1 − θh

)α3−1 dθt
1 − θh

= θα1−1
h (1 − θh)

α2+α3−1
∫ 1

0
uα2−1(1 − u)α3−1 du ∝ θα1−1

h (1 − θh)
α2+α3−1

The final expression has the same functional form as a beta density. So θh ∼ Beta(α1,α2 +

α3).

(b) Suppose you are playing with a thick coin, and get results x(1) . . . x(n), resulting in H heads
and T tails out of n throws. Given θh and θt the random variables H and T have a multinomial
distribution:

Pr(H, T |θh, θt) =
n!

H!T !(n−H− T)!
θHh θTt (1 − θh − θt)

n−H−T .

Assume a uniform prior on the space of possible values of θh and θt (remembering that they
are constrained such that θh ⩾ 0, θt ⩾ 0, and θh + θt ⩽ 1). What is the posterior distribution
for θh and θt?
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Solution: By Bayes’ rule,

Pr(θh, θt|H, T) ∝ Pr(H, T |θh, θt)P(θh, θt)

∝ n!
H!T !(n−H− T)!

θHh θTt (1 − θh − θt)
n−H−T

∝ θHh θTt (1 − θh − θt)
n−H−T

where we have absorbed all constants unrelated to θh and θt (the posterior distribution
is a function of only θh and θt). Note that P(θt, θh) was assumed uniform and so is
a constant. The final expression has the same functional form as a Dirichlet density, so
θh, θt|H, T ∼ Dirichlet(H+ 1, T + 1,n−H− T + 1).

(c) In this same setting, what is the predictive distribution for getting another head? That is,
what’s Pr(x(n+1) = heads | x(1) . . . x(n))?

Solution: It is generally easier to work with the parameters θ instead of the data itself.
The following decomposition holds by the law of total probability and the chain rule of
probability:

Pr(xn+1|x(1), . . . , x(n)) =

∫
Pr(xn+1, θh|x(1), . . . , x(n))dθh

=

∫
Pr(xn+1|θh, x(1), . . . , x(n))Pr(θh|x(1), . . . , x(n))dθh

Note that the two probabilities within the integral are easier to evaluate. Since the coin
flips are independent (given that we know θh), Pr(xn+1 = heads|θh, x(1), . . . , x(n)) = θh.
As for the second density, we know from question b that the posterior distribution for
θh, θt is Dirichlet, hence from question a the marginal posterior distribution θh|h, t ∼

Beta(h+ 1,n− h+ 2). The integral becomes:

Pr(x(n+1) = heads|x(1), . . . , x(n)) =

∫
θhBeta(h+ 1,n− h+ 2)dθh

= EBeta(h+1,n−h+2)[θh] =
h+ 1
n+ 3

(d) Now assume a Dirichlet prior for θh and θt with parameters α1,α2,α3. What is the posterior
in this case?

Solution: We repeat the derivation of question b for P(θh, θt) ∝ θα1−1
h θα2−1

t (1 − θh −

θt)
α3−1:

Pr(θh, θt|h, t) ∝
[
θhhθ

t
t(1 − θh − θt)

n−h−t
] [

θα1−1
h θα2−1

t (1 − θh − θt)
α3−1

]
∝ θα1+h−1

h θα2+t−1
t (1 − θh − θt)

α3+(n−h−t)−1
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Again, this has the form of a Dirichlet density, so θh, θt|h, t ∼ Dirichlet(α1 +h,α2 + t,α3 +

(n− h− t)).

(e) In this same case, what is the predictive distribution?

Solution: A similar derivation as in question c gives

Pr(xn+1 = heads|x(1), . . . , x(n)) =
α1 + h

α1 + α2 + α3 + n

.

(f) If you assume a squared-error loss on the predicted parameter, that is,

L(θ, θ̂) = (θ− θ̂)2 ,

what is the Bayes-optimal estimate of θh and θt?

Solution: In this problem we consider θh and θt separately (they are similar). The Bayes-
optimal estimate θ̂h of θh is the one that minimizes the expected loss over the posterior
distribution of θh:

θ̂h = arg min
z

∫
(θh − z)2Pr(θh|h, t)dθh

Differentiating this with respect to z and setting the result to 0, we find that θ̂h is the pos-
terior expectation of θh, which is α1+h

α1+α2+α3+n (also found in question c and question e).
Similarly, θ̂t = α2+t

α1+α2+α3+n .

(g) As n → ∞, how do optimal estimates relate to the maximum likelihood estimates and to the
prior?

Solution: As n → ∞, the prior contributes less; θ̂h → h
n and θ̂t → t

n , i.e., the estimates
approach the MLE.

8.4 More fun with Dirichlet

Given a parameterized family of probability models Pr(x | θ) and a data set D = (x(1), . . . , x(n))

comprised of independent samples x(i) ≈ Pr(x | θ), we fit the model to the data so as to maximize
the likelihood (or log-likelihood) of all samples. This gives the maximum-likelihood (ML) estimate
of the parameters:

θ̂ML = arg max
θ

log Pr(D | θ)

This approach does not express any prior bias as to which values of θ we should prefer when
data is limited.
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In the sequel, we consider a regularized approach to parameter estimation. Here, we specify
a prior model Pr(θ) over the set of allowed parameter settings Θ. Given a prior model, we may
then employ Bayes’ rule to compute the posterior probability of θ given the observations:

Pr(θ | D) =
Pr(D | θ)Pr(θ)

Pr(D)

where
Pr(D) =

∫
Θ

Pr(D | θ)Pr(θ)dθ

Then, we fit the model to the data by maximizing the (log-) probability of θ conditioned on the
data,

θ̂MAP = arg max
θ

log Pr(θ | D)

= arg max
θ

{log Pr(D | θ) + log Pr(θ) − log Pr(D)}

= arg max
θ

{log Pr(D | θ) + log Pr(θ)}

Note that we have dropped the − log Pr(D) term as this does not depend upon θ and does
not affect the parameter estimate. Hence, we do not need to explicitly evaluate the integral in
the denominator. This may be viewed as a penalized log-likelihood criterion, i.e. we maximize
J(θ) = log Pr(D; θ) + f(θ) subject to the regularization penalty f(θ) = log Pr(θ). The parameter
estimate θ̂MAP is known as the maximum a posteriori (MAP) estimate.

In this problem you will construct MAP estimates for the probabilities of a (potentially biased)
M -sided die, i.e. x(i) ∈ {1, . . . ,M}. We consider the fully-parameterized representation Pr(x =

k) = θk, where 0 ⩽ θk ⩽ 1 for k = 1, . . . ,M and
∑

k θk = 1. This simple model has many relevant
applications.

Consider a document classification task, where we need class-conditional distributions over
words in the documents. Suppose we only consider words 1, . . . ,M (for relatively large M). Each
word in the document is assumed to have been drawn at random from the distribution Pr(x = k |

y; θ) = θk|y, where
∑

k θk|y = 1 for each class y. Thus the selection of words according to the
distribution θk|y can be interpreted as a (biased) M-sided die.

Now, the probability of generating all words x(1), . . . , x(n) in a document of length n would be

Pr(D | y; θ) =
n∏

i=1

Pr(x(i) | y; θ) =
n∏

i=1

θx(i)|y

assuming the document belongs to class y. Note that this model cares about how many times
each word occurs in the document. It is a valid probability model over the set of words in the
document.

Since we typically have very few documents per class, it is important to regularize the param-
eters, i.e., provide a meaningful prior answer to the class conditional distributions.

Let’s start by briefly revisiting ML estimation of the (biased) M-sided die. Similarly to calcu-
lations you have already performed, the ML estimate of the parameter θ from n samples is given
by the empirical distribution:

θ̂x =
n(x)

n
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where n(x) is the number of times value x occurred in n samples. The count n(x) is also a sufficient
statistic for θx as it is all we need to know from the available n samples in order to estimate θx.

Next, we consider MAP estimation. To do so, we must introduce a prior distribution over the
θ’s. A natural choice for this problem is the Dirichlet distribution

Pr(θ;β) =
1

Z(β)

M∏
k=1

θ
βk

k

with non-negative hyperparameters β = (βk > 0,k = 1, . . . ,M) and where Z(β) is just the normal-
ization constant (which you saw earlier and which you do not need to evaluate in this problem).
(a) First, consider this prior model (ignoring the data for the moment). What value of θ is most

likely under this prior model? That is, compute

θ̂(β) = arg max
θ

log Pr(θ;β)

This is the a priori estimate of θ before observing any data.

Solution: We wish to maximize

l(θ) = logP(θ;β) = − logZ(β) + βx log θx

w.r.t parameters θ subject to
∑

x θx = 1. Use Lagrange multipliers.

L(θ,µ) = l(θ) + µ

(
1 −

∑
x

θx

)
= − logZ(β) + µ+

∑
x

(βx log θx − µθx)

Minimizing θ for fixed µ
∂L

∂θx
=

βx

θx
− µ = 0

This gives

θ̂x =
βx

µ

Using the same approach we used in the Exercises from Week 1 (problem 2), i.e.,
∑

x θ̂x =

1, we have µ =
∑

x βx so that

θ̂x =
βx∑
k βk

(b) Next, given the data D, compute the MAP estimate of θ as a function of the hyperparameters
β and the data D (use the sufficient statistics n(x)):

θ̂MAP(D;β) = arg max
θ

log Pr(θ | D;β)

Note that you do not need to calculate Z(β) in order to perform this optimization; you can
optimize the penalized log-likelihood J(θ) = log Pr(D | θ) + f(θ;β) with a simple penalty
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function f(θ;β), as discussed above. Thus we do not have to evaluate the full posterior dis-
tribution Pr(θ | D;β) in order to perform the regularization.

Solution:

We wish to maximize the penalized log-likelihood

l(θ) = logP(D|θ) + logP(θ;β) = − logZ(β) +

n∑
i=1

log θx(i) +
∑
x

{βx log θx}

We can rewrite the quantity
∑n

i=1 log θx(i) =
∑

x nx log θx and we have,

l(θ) = logP(D|θ) + logP(θ;β) = − logZ(β) +

n∑
i=1

log θx(i) +
∑
x

{(nx + βx) log θx}

w.r.t. θ subject to the constraint
∑

x θx = 1. We minimize the Lagrangian

L(θ,µ) = l(θ) + µ

(
1 −

∑
x

θx

)
= µ− logZ(β) +

∑
x

{(n(x) + βx) log θx − µθx}

Having
∂L

∂θx
=

n(x) + βx

θx
− µ = 0

gives

θx =
n(x) + βx

µ

As before, we get µ =
∑

x(n(x) + βx) so that the MAP estimate is

θ̂x =
n(x) + βx∑
x(n(x) + βx)

(c) Show that your MAP estimate may be expressed as a convex combination of the a priori
estimate θ̂(β) and the ML estimate θ̂ML(D). The means that we may write

θ̂MAP(D;β) = (1 − λ)θ̂ML(D) + λθ̂(β)

for some λ ∈ [0, 1]. Note that the same convex combination holds for each component θx.
Determine λ as a function of the number of samples n and the hyperparameters β.

Solution: Since
∑

x n(x) = n and let N =
∑

x βx, the MAP estimate becomes

θ̂x =
n(x) + βx

n+N
=

1
n+N

{
nθ̂ML

x +Nθ̂Priorx

}
=

n

n+N
θ̂ML
x +

N

n+N
θ̂Priorx

Therefore

λ =
N

n+N
=

∑
x βx∑

x(n(x) + βx)
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where x = 1, ...,M.

As this shows, one way of thinking of a prior distribution is that it is a proxy for any data
we have observed in the past but no longer have available. The normalized parameters β̂i =

βi/N, where N =
∑

i βi, express our prior estimate of the parameters θ while the normalization
parameter N expresses how strongly we believe in that prior estimate.


