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8 Optional

8.1 Throwing rocks: asymmetric loss

You just bought a new trebuchet and you are interested in making predictions about how far it can
throw a rock. Your ballistics officer tells you that optimizing the squared error of your predictions
is not appropriate for the problem. If your prediction is within some constant c of the true value
then they can use your predicted value to aim the trebuchet such that it hits the castle, but if your
prediction off by more than c, then using the prediction for aiming will cause the trebuchet to
miss. However, the fact is, it’s better for your prediction to be too short than too far.

So, we will let

L(a,g) =


0 if |a− g| < c

1 if a− g > c

2 if g− a > c

If you know that the range of the ball for these types of trebuchets is distributed as a Gaussian
with mean µ and variance σ2, what prediction minimizes loss L?

(This is a little bit tricky. It’s fine to just write out an expression in terms of c, µ, and σ2. )

Solution: The best prediction is the one that minimizes the expected loss over the randomness
in a:

ĝ = arg min
g

Ea[L(a,g)]

= arg min
g

∫
a

L(a,g)p(a)da

= arg min
g

∫∞
−∞ L(a,g)N(a|µ,σ2)da

= arg min
g

∫g−c

−∞ L(a,g)N(a|µ,σ2)da+

∫g+c

g−c

L(a,g)N(a|µ,σ2)da+

∫∞
g+c

L(a,g)N(a|µ,σ2)da

Note that we intentionally divided up the integral so that we can easily plug in values for
L(a,g). In the first integral, we have that the prediction is too far, and in the last integral, the
prediction is too short:

= arg min
g

∫g−c

−∞ 2N(a|µ,σ2)da+

∫∞
g+c

N(a|µ,σ2)da. (11)

We can now solve the optimization problem:

0 =
1
dg

[ ∫g−c

−∞ 2N(a|µ,σ2)da+

∫∞
g+c

N(a|µ,σ2)da

]
= 2N(g− c|µ,σ2) −N(g+ c|µ,σ2)
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which we see simplifies nicely by the fundamental theorem of calculus. We now solve for
g:

2N(g− c|µ,σ2) = N(g+ c|µ,σ2)

2 exp

(
−

(g− c− µ)2

2σ2

)
= exp

(
−

(g+ c− µ)2

2σ2

)
We can take log of both sides and do some algebra to get the final answer:

g =
−σ2 ln(2)

2c
+ µ.

Intuitively, this makes sense. We slightly under-predict the mean because of our biased
loss function.

8.2 Copy that: discrete Bayes update and decision theory

You have just bought a copy machine at a garage sale. You know it is one of two possible models,
m1 or m2, but the tag has fallen off, so you’re not sure which.

You do know that m1 machines have a 0.1 “error” (bad copy) rate and m2 machines have a 0.2
error rate.
(a) You use your machine to make 1000 copies, and 140 of them are bad. What is the maximum

likelihood estimate of the machine’s error rate? Explain why. (Remember that you’re sure it’s
one of those two types of machines).

Solution: We first solve the MLE of the type of the machine, which we denote by b ∈
{1, 2}. Using a particular machine, the number of bad copies, denoted by k, is a random
variable, as k ∼ Binomial(n,pb). Thus,

Pr(k | b) =

(
n

k

)
pk
b(1 − pb)

n−k ⇒ log Pr(k | b) = logC+ k logpb + (n− k) log(1 − pb).

Here, C is the value of n choose k. With n = 1000, k = 140, p1 = 0.1 and p2 = 0.2, we have

log Pr(k | b = 1) = logC+ 140 log(0.1) + 860 log(0.9) = logC− 412.97

log Pr(k | b = 2) = logC+ 140 log(0.2) + 860 log(0.8) = logC− 417.22

We can see that log Pr(k | b = 1) > log Pr(k | b = 2), which implies that the MLE of the
type of the machine is bml = 1. It follows that the machine’s error rate is pbml = 0.1.

(b) Looking more closely, you can see part of the label, and so you think that, just based on the
label it has a probability 0.2 of being an m1 type machine and a probability 0.8 of being an m2

type machine. If you take that to be your prior, and incorporate the data from part a, what is
your posterior distribution on the type of the machine?


