
6.7900 Fall 2024: Homework 0
Solutions

This is a set of diagnostic and warm-up problems, divided into two parts.

1. To be handed in: Problems in the first part represent basic background in linear algebra,
applied math, and optimization. They aren’t trivial, but if they aren’t relatively easy for you,
then it might be better to gain some more background in a prerequisite area before taking
6.7900.

2. To be used for your own practice: Problems in the second part are designed to help you
learn/practiced numpy-style vectorized programming strategies, which will help you create
efficient implementations of algorithms studied in class and also to interface with existing li-
braries. Please solve these problems using numpy, striving for elegant and efficient solutions.

If you don’t have a Python/numpy installation on your own computer (or even if you do!)
Google Colab (https://colab.google/) is a good way to get going quickly.

Submission instructions

Please hand in your work via Gradescope via the link at https://gradml.mit.edu/info/homeworks/.
If you were not added to the course automatically, please use Entry Code R7RGGX to add yourself
to Gradescope.

• Latex is not required, but if you are hand-writing your solutions, please write clearly and
carefully. You should include enough work to show how you derived your answers, but you
don’t have to give careful proofs.

• Homework is due on Tuesday September 10 at 11PM.

• Lateness and extension policies are described at https://gradml.mit.edu/info/class policy/.

1

MIT 6.7900 Fall 2024 2

1 Math Background

1.1 Just plane fun

Consider a hyperplane in n-dimensional Euclidean space, described by the n+ 1 real values wi for
i = 0, . . . , n: the hyperplane consists of points (x1, . . . , xn) satisfying

w0 + w1x1 + . . .+ wnxn = 0 .

1. Find a unit vector normal to the hyperplane. Given a point v = (v1, . . . , vn) on the hyperplane,
give the equation for the line through the point that is orthogonal to the hyperplane.

Solution: Let w = (w1, . . . , wn), then w/‖w‖ is a unit vector normal to the hyperplane.
To prove this, given any two points x and x′ on the hyper plane, we will show that w is
perpendicular to x− x′ by showing their dot-product is 0:

wT (x− x′) =
n∑
i=1

wixi −
n∑
i=1

wix
′
i = (−w0)− (−w0) = 0

2. Given a point v = (v1, . . . , vn), how can you determine which side of the hyperplane it is on?

Solution: Let f(x) = w0 +wTx = w0 + w1x1 + · · ·+ wnxn. Then f(v) = 0 means v is on
the hyperplane; f(v) > 0 means v is on one side of the hyperplane, while f(v) < 0 means
it is on the other side of the hyperplane.

3. What is the distance of a point v = (v1, . . . , vn) to the hyperplane?

Solution: Assume v̄ is the projection of v = (v1, . . . , vn) on the hyperplane. Since w/‖w‖
is the unit normal vector of the hyperplane, we know that

v = v̄ + t
w

‖w‖

where |t| is the distance of v to the hyperplane. We also know f(v̄) = 0 by the previous
question, that means

0 = f(v̄) = f

(
v − t w

‖w‖

)
= w0 +wTv − tw

Tw

‖w‖
= w0 +wTv − t‖w‖

MIT 6.7900 Fall 2024 3

Therefore, the distance is given by

|t| =
∣∣∣∣∣w0 +wTv

‖w‖

∣∣∣∣∣ = |f(v)|
‖w‖

1.2 Multivariate Gaussian

Let X be a random variable taking values in Rn. It is normally distributed with mean µ and
covariance matrix Σ. Recall that the probability density function (pdf) pX(x), sometimes denoted
p(X = x), for X is given by

pX(x) = 1√
(2π)n|Σ|

exp
(
−1

2(x− µ)TΣ−1(x− µ)
)

1. Show how to obtain the normalization constant 1/
√

(2π)n|Σ| for the multivariate Gaussian,
starting from the fact that

pX(x) ∝ exp
(
−1

2(x− µ)TΣ−1(x− µ)
)

Hints: It’s fine to assume µ = 0 (Why?). A useful (and cool!) fact is that
∫
R exp(−1

2x
2) =

√
2π.

Solution: To obtain the normalization constant we need to evaluate the integral∫
Rn

exp
(
−1

2(x− µ)TΣ−1(x− µ)
)
dx.

Observe that wlog we can assume µ = 0. Thus, it remains to evaluate∫
Rn

exp
(
−1

2x
TΣ−1x

)
dx (1)

Let y = Σ−1/2x, then by Jacobian transformation (1) can be rewritten as∫
Rn

exp
(
−1

2y
Ty
)
|Σ1/2|dy = |Σ1/2|

n∏
i=1

∫
R

exp
(
−1

2y
2
i

)
dyi

= |Σ1/2|
n∏
i=1

√
2π

We use the fact that
∫
R exp(−1

2x
2) =

√
2π, then using the fact that

∫
p(x) = 1, we conclude

that the normalization constant is 1√
(2π)n|Σ|

.

MIT 6.7900 Fall 2024 4

2. Let the random variable Y = 2X. What is the pdf of Y ?

Solution: By the rule of probability density function for change of variable,

pY (y) =
(1

2

)n 1√
(2π)n|Σ|

exp
(
−1

2

(
y

2 − µ
)T

Σ−1
(
y

2 − µ
))

= 1√
(2π)n|4Σ|

exp
(
−1

2 (y − 2µ)T (4Σ)−1 (y − 2µ)
)

So Y is still normally distributed, with mean 2µ and covariance matrix 4Σ.

3. What can we say about the distribution of X if Σ is the identity matrix, I? Does this imply
anything about factorization of the pdf?

Solution: When Σ is the identity matrix,

pX(x) = 1√
(2π)n

exp
(
−1

2

n∑
i=1

(xi − µi)2
)

=
n∏
i=1

1√
2π

exp
(
−1

2(xi − µi)2
)

The factorization of the pdf implies that X1, . . . , Xn are now independent random vari-
ables.

4. What can we say about the distribution of X if Σ is

[
10 0
0 1

]
? Approximately what shape do

equiprobability contours (i.e., sets {x ∈ Rn : pX(x) = c} for some c) have?

Solution: Although the covariance matrix is not a (scaled) identity matrix, the off-diagonal
elements are still zero, so the two components of the 2D random vector are still indepen-
dent and the pdf factorizes. Specifically, we have

pX(x) =
exp

(
− 1

2×10(x1 − µ1)2
)

√
2π × 10

·
exp

(
−1

2(x2 − µ2)2
)

√
2π

Let

c = pX(x) =
exp

(
− 1

2×10(x1 − µ1)2
)

√
2π × 10

·
exp

(
−1

2(x2 − µ2)2
)

√
2π

MIT 6.7900 Fall 2024 5

Via simple manipulation, we get the equation

1
10(x1 − µ1)2 + (x2 − µ2)2 = C

where C > 0 is a constant. This is a ellipse in R2 centered at µ. Specifically, the contours
look like those:

15 10 5 0 5 10 15

15

10

5

0

5

10

15

5. What can we say about the distribution of X if Σ is

[
10 −4
−4 10

]
? Approximately what shape do

equiprobability contours of this distribution have?

Solution: This is a 2D normally distributed random vector. The two components are (neg-
atively) correlated.

Similarly, let pX(x) = c, we will get an equation of an ellipse. The contours for this specific
case look like those:

MIT 6.7900 Fall 2024 6

-2 -1 0 1 2

-2

-1

0

1

2

6. Is

[
2 10
10 2

]
a valid Σ? How can you tell?

Solution: No, because it is not positive semi-definite.

7. If µ = (1, 2), and Σ =
[
10 0
0 1

]
, what is the conditional pdf pX1|X2(x1 | 3)?

MIT 6.7900 Fall 2024 7

Solution: Note there is no correlation between X1 and X2, so they are independent. In
this case, conditioning on X2 does not change the distribution of X1, which is a normally
distributed random variable with mean 1 and variance 10.

1.3 Probability

1. Let A,B be p× q matrices and x be a random q × 1 vector. Prove that

cov(Ax,Bx) = A cov(x)BT

where cov(u, v) = E
[
(u− E[u])(v − E[v])T

]
is the cross-covariance matrix between random

vectors u and v, while cov(u) = E
[
(u− E[u])(u− E[u])T

]
is the covariance matrix for u.

Solution:
cov(Ax,Bx) = E

[
(Ax− E[Ax])(Bx− E[Bx])T

]
= E

[
A(x− E[x])(B(x− E[x]))T

]
= E

[
A(x− E[x])(x− E[x])TBT

]
= AE

[
(x− E[x])(x− E[x])T

]
BT

= A · cov(x) ·BT .

2. You go for your annual checkup and have several lab tests performed. A week later your doctor
calls you and says she has good and bad news. The bad news is that you tested positive for a
marker of a serious disease, and that the test is 97% accurate (i.e. the probability of testing
positive given that you have the disease is 0.97, as is the probability of testing negative given
that you don’t have the disease). The good news is that this is a rare disease, striking only 1 in
20,000 people. What are the chances that you actually have the disease?

Solution: Let A be the event of you having the disease and B be the event of testing
positive. By Bayes rule we have:

P (A|B) = P (B|A)P (A)
P (B|A)P (A) + P (B|¬A)P (¬A) = 0.97 · 0.00005

0.97 · 0.00005 + 0.03 · 0.99995 ≈ 0.0016

MIT 6.7900 Fall 2024 8

3. Consider the following generative process describing the joint distribution p(Z,X) : Z ∼
Bernoulli(0.2), X | Z = 0 ∼ Gaussian(µ0, 0.5) and X | Z = 1 ∼ Gaussian(µ1, 0.5), where
µ0 = 3 and µ1 = 5. Which of the following plots is the marginal distribution p(X)?

Solution: The marginal distribution of X is given by:

p(X) = p(Z = 0)p(X|Z = 0) + p(Z = 1)p(X|Z = 1) = 0.8 · N (3, 0.5) + 0.2 · N (5, 0.5).

Hence, the solution is (C).

4. Alice and Bob were driving through a tunnel while listening to the Billion-dollar lottery drawing
live on the radio. Due to the weak signal, they couldn’t hear the last number perfectly clearly.
Alice and Bob think the number was A and B, respectively. Is A independent of B? Is A
independent of B given the true lottery number T?

Solution: A is not independent of B. Because for example, the chance of B = 30 is very
high if A = 13; much higher than if we knew nothing about A. In other words, P (B)! =
P (B|A). By similar reasoning, P (B|T) = P (B|T,A), and therefore A is independent of B
given the true lottery number.

MIT 6.7900 Fall 2024 9

1.4 Multivariate calculus

1. Find the minimum value of the function f(x, y) = x2 + 2y2 − xy + x− 4y over R2.

Solution: First observe that f grows to +∞ as |x| → ∞ and |y| → ∞, so f must attain a
minimum value at some point in R2. This global minimum will also be a local minimum,
so it can be found using the first derivative test.

To prove the first statement, we can write f as:

f(x, y) = x2 + 2y2 − xy + x− 4y

=
(
x

2 − y
)2

+ 3
4x

2 + y2 + x− 4y

≥ 3
4x

2 + y2 + x− 4y

Since the quadratic terms have strictly positive coefficients, the function goes to +∞ in all
directions. Now, computing partial derivatives:

∂f

∂x
(x, y) = 2x− y + 1

∂f

∂y
(x, y) = 4y − x− 4

Setting partial derivatives to 0,
2x0 − y0 + 1 = 0

4y0 − x0 − 4 = 0

Solving these equations, we get x0 = 0, y0 = 1.

So far, we only know that this is a zero derivative point, it could be either a local maximum,
or local minimum, or a saddle point. Normally we would compute the Hessian to resolve
this. But since we argued earlier that the function must have a global minimum, and
there is only one zero derivative point, the local minimum has to be the global minimum.
Therefore the global minimum value of f is f(x0, y0) = −2.

2. Show that f(x, y) is convex over R2 by showing that its Hessian is positive semi-definite.

MIT 6.7900 Fall 2024 10

Solution: Since the function is twice differentiable, it is convex if and only if its Hessian

matrix is positive semi-definite. We therefore compute the Hessian matrix, which is defined

as:

H =


∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2


Computing,

∂f

∂x
(x, y) = 2x− y + 1

∂f

∂y
(x, y) = 4y − x− 4

∂2f

∂x2 = 2

∂2f

∂x∂y
= −1

∂2f

∂y2 = 4

Hence,

H =
[

2 −1
−1 4

]

It is easy to see that H is positive definite since it is diagonally dominant. Alternatively, we
can compute its eigenvalues, λ1 and λ2:

λ1 + λ2 = trace(H) = 6
λ1 · λ2 = det(H) = 7

Solving, λ1 = 3 +
√

2 and λ2 = 3−
√

2. Since these are both positive, H is positive definite.
Hence f is convex over R2.

Note: Here’s a handy tool for quickly (sanity) check your matrix calculus http://matrixcalculus.

org/.

http://matrixcalculus.org/
http://matrixcalculus.org/

MIT 6.7900 Fall 2024 11

1.5 Optimization and Gradient Descent

Grady Ent decides to train a single sigmoid unit using the following objective function:

E(w) = 1
2
∑
i

(σ(x(i) ·w)− y(i))2 + β

2
∑
j

w2
j

where σ(z) = 1/(1 + e−z) is the sigmoid function. Note that x(i) ·w is the inner product between
the vectors x(i) and w, where (x(i), y(i)) is the i-th training data point.
(a) Write an expression for ∂E/∂wj .

Solution:

∂E

∂wj
= ∂

∂wj

(1
2
∑
i

(σ(x(i) ·w)− y(i))2
)

+ ∂

∂wj

(1
2β
∑
j

w2
j

)

=
∑
i

∂`i

∂ŷ(i)
∂ŷ(i)

∂z(i)
∂z(i)

∂wj
+ βwj

=
∑
i

(ŷ(i) − y(i))(ŷ(i))(1− ŷ(i))(x(i)
j) + βwj

Where we use ŷ(i) := σ(x(i) ·w) to represent the predictions, `i := 1
2(ŷi−yi)2 as shorthand

for the squared error on an individual point, and z(i) := x(i) ·w.

(b) Give the gradient descent update to weight wj given a single training example (x, y). Your
answer should be in terms of the training data and a learning rate.

Solution:

wj := wj − α((σ(x ·w)− y)σ(x ·w)(1− σ(x ·w))xj + βwj),

where α is the learning rate.

(c) Is the following claim true? “Stochastic gradient descent steps always decrease the objective”.
Please provide a brief justification for your answer.

Solution: False. Stochastic gradient descent only provides an approximation of the gra-
dient, as it does not use all training samples, and any individual sample may cause a step
away from the optimum.

MIT 6.7900 Fall 2024 12

(d) Is the following claim true? “There are circumstances in which stochastic gradient descent is
to be preferred to exact gradient descent”. Please provide a brief justification for your answer.

Solution: True. (1) It may help avoid local minima, or even undesirable global minima.
(2) It can sometimes improve computational efficiency.

MIT 6.7900 Fall 2024 13

2 Programming problems: Just for practice — do not turn in!

Do not use for loops in any of these solutions! (Some of these are tricky, but cool when you see
it!).

2.1 Regularization

Given an n× n matrix C, add a scalar a to each diagonal entry of C.

Solution:

import numpy as np

Feel free to change the parameters

n, C, and a below

n = 3

C = np.random.randn(n, n)

a = np.random.randn(1)

Solution 1:

def regularization1(C, a):

n = np.shape(C)[0]

return C + a * np.eye(n)

Solution 2:

def regularization2(C, a):

n = np.shape(C)[0]

idx = np.ravel_multi_index((range(n), range(n)), C.shape)

C.flat[idx] += a

return C

While a little bit more complicated,

solution 2 is much more efficient than solution 1 when n is large.

print(regularization1(C, a))

print(regularization2(C, a))

MIT 6.7900 Fall 2024 14

2.2 Largest Off-diagonal Element

Given an n× n matrix A, find the value of the largest off-diagonal element.

Solution:

import numpy as np

Feel free to change the parameters

n and A below

n = 3

A = np.random.randn(n, n)

Creating a mask for the off-diagonal indices

msk = np.eye(n) == 0

v = np.max(A[msk])

2.3 Pairwise Computation

Given a vector x of length m, and a vector y of length n, compute m × n matrices: A and B, such
that A(i, j) = x(i) + y(j), and B(i, j) = x(i) · y(j).

Solution:

import numpy as np

feel free to change the parameters

m, n, x, and y below

m = 3

n = 4

x = np.random.randn(m)

y = np.random.randn(n)

A = x[:, np.newaxis] + y[np.newaxis, :]

B = x[:, np.newaxis] * y[np.newaxis, :]

2.4 Pairwise Euclidean Distances

Given a d ×m matrix X, and a d × n matrix Y , compute an m × n matrix D, such that D(i, j) =∥∥xi − yj∥∥, where xi is the i-th column of X, and yj is the j-th column of Y . Hint: You may

MIT 6.7900 Fall 2024 15

find the following decomposition (of the norm/distance squared) helpful for improving your code
efficiency:

∥∥∥xi − yj∥∥∥2
=

d∑
k=1

(
xik − y

j
k

)2
=

d∑
k=1

xi
2
k +

d∑
k=1

yj
2

k −
d∑

k=1
2xiky

j
k.

Solution:

import numpy as np

Feel free to change the dimension parameters

d, m, n, X, and Y below

d = 3

m = 4

n = 5

X = np.random.randn(d, m)

Y = np.random.randn(d, n)

Solution 1: two-fold for-loop

D = np.zeros((m, n))

for j in range(n):

for i in range(m):

D[i, j] = np.linalg.norm(X[:, i] - Y[:, j])

Solution 2: one-fold for-loop

D = np.zeros((m, n))

for j in range(n):

Z = (X.T - Y[:, j]).T

D[:, j] = sum(Z**2)

D = np.sqrt(D)

Solution 3: no for-loop (the best solution).

Using the hint. There are three terms, each can be computed

for all m n pairs in batch without for-loop.

tx2 = np.sum(X**2, 0)

ty2 = np.sum(Y**2, 0)

Txy = np.dot(X.T, Y)

MIT 6.7900 Fall 2024 16

D = tx2[:, np.newaxis] + ty2[np.newaxis, :] - 2 * Txy

D = np.sqrt(D)

Simple benchmark shows that solution 3 is 10x to 30x

faster than solution 1 for moderate size problems.

2.5 Compute Mahalanobis Distances

The Mahalanobis distance is a measure of the distance between a point P and a distribution D,
introduced by P. C. Mahalanobis in 1936. It is a multi-dimensional generalization of the idea of
measuring how many standard deviations away P is from the mean of D. This distance is zero
if P is at the mean of D, and grows as P moves away from the mean: Along each principal
component axis, it measures the number of standard deviations from P to the mean of D. If
each of these axes is rescaled to have unit variance, then Mahalanobis distance corresponds to
standard Euclidean distance in the transformed space. Mahalanobis distance is thus unitless and
scale-invariant, and takes into account the correlations of the data set (from http://en.wikipedia.

org/wiki/Mahalanobis distance). Given a center vector c, a positive-definite covariance matrix S,
and a set of n vectors as columns in matrix X, compute the distances of each column in X to c,
using the following formula:

D(i) =
(
xi − c

)T
S−1

(
xi − c

)
. (2)

Here, D is a vector of length n.

Solution:

import numpy as np

Feel free to change the parameters

n, c, S, and X below

n = 4

c = np.random.randn(n)

we need a PD covariance matrix S,

here's one (common) way of creating a random PD matrix

_ = np.random.randn(n, n)

S = (_) @ (_.T) + 1e-3 * np.eye(n)

X = np.random.randn(n, n)

http://en.wikipedia.org/wiki/Mahalanobis_distance
http://en.wikipedia.org/wiki/Mahalanobis_distance

MIT 6.7900 Fall 2024 17

Solution 1: naive solution as baseline

Not good: inversing S for n times.

D = np.zeros(n)

for i in range(n):

z = X[:, i] - c

D[i] = np.dot(np.dot(z.T, np.linalg.inv(S)), z)

Solution 2: do pre-computation

D = np.zeros(n)

invS = np.linalg.inv(S)

for i in range(n):

z = X[:, i] - c

D[i] = np.dot(np.dot(z.T, invS), z)

Solution 3: vectorization

Z = X - c[:, np.newaxis]

invS = np.linalg.inv(S)

D = np.sum(Z.conj() * (np.dot(invS, Z)), axis=0)

Solution 4: directly solving linear equations is

more efcient than doing inverse.

Z = X - c[:, np.newaxis]

D = np.sum(Z.conj() * (np.linalg.solve(S, Z)), axis=0)

2.6 2-D Gaussian

Generate 1000 random points from a 2-D Gaussian distribution with mean µ = [4, 2] and covariance

Σ =
(

1 1.5
1.5 3

)
(3)

Plot the points so obtained, and estimate their mean and covariance from the data. Find the
eigenvectors of the covariance matrix and plot them centered at the sample mean.

Solution:

import matplotlib.pyplot as plt
import numpy as np

MIT 6.7900 Fall 2024 18

N = 1000

mu = [4, 2]

sigma = [[1, 1.5], [1.5, 3]]

R = np.random.multivariate_normal(mu, sigma, N)

plt.plot(*(zip(*R)), marker=".", ls="")

plt.show()

muhat = np.mean(R, 0)

R_0 = R - muhat[np.newaxis, :]

Why is the denominator (N-1) instead of (N)? Check

out Bessel's correction

SIGMA_hat = np.dot(R_0.T, R_0) / (N - 1)

L, Q = np.linalg.eig(SIGMA_hat)

plt.arrow(

muhat[0],

muhat[1],

Q[0, 0],

Q[1, 0],

shape="full",

lw=3,

length_includes_head=True,
head_width=0.01,

)

plt.arrow(

muhat[0],

muhat[1],

Q[0, 1],

Q[1, 1],

shape="full",

lw=3,

length_includes_head=True,
head_width=0.01,

)

plt.plot(*(zip(*R)), marker=".", ls="")

plt.axis([1, 6, -2, 6])

MIT 6.7900 Fall 2024 19

plt.show()

2.7 Tournament fun

A tennis tournament starts with sixteen players. Let’s call them hi, i = 1, 2, . . . 16 (human i, to avoid
the potentially confusing notation pi). The first round has eight games, randomly drawn/paired;
i.e., every player has an equal chance of facing any other player. The eight winners enter the next
round.

As an enthusiastic tennis and data fan, you have an internal model of these 16 players based on
their past performance. In particular, you view each player hi as having a performance index score
si ∼ Gaussian(θi, σ2

i). The mean θi roughly captures the player’s ‘intrinsic ability’ and the variance
σ2
i roughly captures the player’s performance reliability (accounting for recent injuries etc.). In a

match between hi and hj , player hi wins if si > sj .
Based on your model, what’s the probability that your “top seed player” (the one with the

highest θ) enters the next round? Run 10,000 simulations to check if it agrees with your answer.

Solution: Suppose the top seed player is h1. For h1 to win against an opponent hj , we need
the event sj − s1 < 0. Since si and sj are independent normal distributions, their difference is
also a normal distribution, with mean θj − θ1 and variance σ2

j + σ2
1.

Because h1 has a 1/15 chance of facing any one (and only one) other player, we have 15
such disjoint events. So the total probability of h1 entering the next game is simply:

1
15

15∑
j=2

p(sj − s1 < 0)

where (sj − s1) ∼ Gaussian(θj − θ1, σ
2
j + σ2

1). Solution code below.

import numpy as np
from scipy.stats import norm

Feel free to change the parameters below

theta = np.linspace(3, 16, 16)

sigma = np.linspace(1, 2, 16)

We'll start by getting our CDF solution

get our top seed player's parameters

top_seed_index = np.argmax(theta)

top_seed_theta = theta[top_seed_index]

MIT 6.7900 Fall 2024 20

top_seed_sigma = sigma[top_seed_index]

get the fifteen 'difference' random variable parameters

all_other_theta = np.delete(theta, top_seed_index)

all_other_sigma = np.delete(sigma, top_seed_index)

x_mean = all_other_theta - top_seed_theta

x_var = top_seed_sigma**2 + all_other_sigma**2

x is the array holding the prob. of top seed player

winning against each of the 15 opponents

x = [norm.cdf(0, loc=i, scale=np.sqrt(j)) for (i, j) in zip(x_mean, x_var)]

ans = np.sum(x) / 15

print(f"Top seed player's chance of winning is {ans}")

We then run some simulations to see if the proportion of

wins agree with the solution above

M = int(1e5)

count = 0

def one_simulation(all_other_theta, all_other_sigma):

choose a random opponent index

j = np.random.choice(range(15))

sj = norm.rvs(all_other_theta[j], all_other_sigma[j])

top_seed_s = norm.rvs(top_seed_theta, top_seed_sigma)

if top_seed_s < sj:

return False
return True

for i in range(M):

if one_simulation(all_other_theta, all_other_sigma):

count += 1

print(f"Top seed player wins {count/M} of the total simulated games.")

	Math Background
	Just plane fun
	Multivariate Gaussian
	Probability
	Multivariate calculus
	Optimization and Gradient Descent

	Programming problems: Just for practice — do not turn in!
	Regularization
	Largest Off-diagonal Element
	Pairwise Computation
	Pairwise Euclidean Distances
	Compute Mahalanobis Distances
	
	Tournament fun

