
6.790 Practice Material for Final Exam
Revision: 12/7/24 5:30 0PM

Note: these questions are gathered from several past years’ exams, and they concentrate only
on material from the second part of the course. They do not cover generalization bounds, missing
data, PCA (but those topics may appear on our exam).

Question 6 uses graphical model notation we haven’t really discussed but you might still find it
useful to think about in the context of density estimation.

Finally, this is longer than a final exam – think of it just as a collection of problems.
Remember that the final exam will be cumulative and more directly cover material from the

second half of the course.

Representation Learning

1. (a) Given an image x, in contrastive learning, positives are created by applying a set of trans-
formations. After pre-training, suppose the downstream evaluation task is to predict im-
age rotation in the set {0, 90, 180, 270} degrees. Which of the following transformations
should not be used during pre-training with contrastive learning: cropping, rotations,
adding gaussian noise to image pixels, image translation.

(b) Assume a pre-trained transformer-based LLM model, pθ(xt|xt−1:t−T ), where xt ∈ <N

denotes the tth word and θ are the model parameters. Also, assume a pre-trained trans-
former vision model that converts an image into a set of K feature vectors (or visual
tokens): v1:K, where vk ∈ <M. The goal is to use these two models and a small image-
caption dataset to train a captioning system. Assuming fφ is a learnable linear function,
which of the following options is a reasonable way of training the captioning system keep-
ing in mind the small training dataset and why:
Option 1: maxθ,φ Ex,vpθ

(
xt|fφ(xt−1:t−T ), {(vk)}Kk=1

)
Option 2: maxφ Ex,vpθ

(
xt|xt−1:t−T , {fφ(vk)}Kk=1

)
Option 3: maxφ,θ Ex,vpθ

(
xt|xt−1:t−T , {fφ(vk)}Kk=1

)
Option 4: None of the above as linear f is not expressive enough.

(c) Predicting the full input (x) from a masked version (xM) is a state-of-the-art method
for feature learning (e.g., Masked Auto-Encoders). Consider re-purposing the learned
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features for solving an image classification problem. Since the features were trained using
masked images, and the new task requires processing non-masked images – using the pre-
trained features presents a distribution shift problem. Which among the two pre-training
strategies would you prefer to mitigate distribution shift and why?
Option 1: Reduce the percentage of masked pixels in xM to be 6 1% pixels.
Option 2: With probability 0.2 do not mask any pixels in xM. Otherwise mask 75% pixels.

Mixtures, ELBO

2. Consider a simple mixture model involving k spherical Gaussians in two dimensions. So x ∈ R2

and

P(x|θ) =

k∑
z=1

P(z|θ)P(x|z, θ) =
k∑
z=1

pzN(x;µz,σ2
zI)

Our goal is to find parameters that maximize the log-likelihood of n points, i.e., `(θ) =∑n
i=1 logP(xi|θ). If we used stochastic gradient ascent, we would select a data point xi at

random, and update θ← θ+ η∇θ logP(xi|θ). We wish to express a stochastic algorithm using
the ELBO criterion and its alternating optimization view. Recall the ELBO expression

ELBO(Q; θ) =
n∑
i=1

{
k∑
z=1

Q(z|xi) log
[
pzN(xi;µz,σ2

zI)
]
+H(Qz|xi)

}
=

n∑
i=1

ELBOi(Q·|xi ; θ)

(a) What is the number of adjustable parameters (degrees of freedom) in this mixture model?

(b) Given a selected xi, how do we choose Q(z|xi)? Write your answer explicitly using only
expressions already provided above.

(c) Based on the selected xi and your choice of Q(z|xi) above, we would like to make a
stochastic gradient update of µ1 using the ELBOi criterion. Please select all the correct
statements about our ELBOi update of µ1:

( ) For the purposes of updating µ1, Q(z|xi) is treated as fixed
( ) The update of µ1 will depend only on Q(1|xi), µ1, σ2

1 and xi

( ) After updating µ1 and hence θ, ELBOi(Q·|xi ; θ) > logP(xi|θ)
( ) After updating µ1 and hence θ, ELBOi(Q·|xi ; θ) = logP(xi|θ)

(d) Does the stochastic ELBOi update of µ1 keep it equivalent to the stochastic gradient
update of the original log-likelihood logP(xi|θ) with respect to µ1? (Y/N)
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Diffusion models

3. Diffusion models operate by adding noise to clean examples at varying levels and learning
to predict what the added noise was. This enables the models to later sample new images
by iteratively de-noising noisy starting points towards clean examples. Our dataset of clean
examples is given by {xi0}, which can be written as a distribution q(x0).

Let xt be a noisy image resulting from a clean example x0. This transformation can can be
described as

xt =
√
ᾱtx0 +

√
1 − ᾱtε, ε ∼ N(0, I)

where ᾱt is a function of the specific noise level at time t. A simple estimation criterion for
de-noising diffusion models minimizes

E{ ‖εθ(xt, t) − ε‖2 }

with respect to the parameters θ of the de-noising model εθ(xt, t).

(a) Let’s define what the expectation is over in the estimation criterion. Specify all the vari-
ables that are random, and the distributions that their values are sampled from.

(b) Suppose we only had a single data point x0 yet used the estimation criterion to estimate
a diffusion model. What is the solution to εθ(xt, t) that we would get?

Domain Adaptation

4. Consider an unsupervised domain adaptation task (co-variate shift assumption). We have
a large number of labeled source domain examples therefore effectively having access to
PS(x,y) = PS(x)PS(y|x). We also have a large number of unlabeled examples from the tar-
get domain so we can construct PT (x). Assume also that the support of PT (x) is contained
within the support of PS(x).

We are interested in evaluating the target risk of any class-label classifier h. To this end, a
friend of ours was kind enough to train a probabilistic domain classifier, i.e., a classifier that
takes in x and outputs the probability that x came from domain S or T . This is different from
the class-label classifier that outputs our target label y.
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Unfortunately for us, in training the domain classifier, the friend assumed that target examples
were twice as likely to occur overall than the source examples. The domain classifier was
trained to maximize the log-probability of the correct domain for each x when x was sampled
from PT (x) twice as often as from PS(x).

(a) Write down an expression for the friend’s probabilistic domain classifier Q(d = T |x) as a
function of PS(x) and PT (x).

(b) We wish to use the domain classifier to evaluate the target risk of any class-label classifier
h(x). You can assume that Loss(y,h(x)) is given. Provide an expression for the target risk
of h as a function of PS(x), PS(y|x), h, Loss(y,h(x)), and the friend’s domain classifier
Q(d = T |x).

Probable cause

5. You have a classification problem, but your training examples are only labeled with probabili-
ties, so your data set consists of pairs (x(i),p(i)), where p(i) is the probability that x(i) belongs
to class 1.

You want to train a neural network with a single unit to predict these probabilities.

(a) What is a good choice for the activation function of your final output unit?

(b) You can think of the training label p(i) as specifying a true probability and the current
output of your neural network as specifying an approximate probability q(i). You think
a reasonable objective would be to minimize the KL divergence KL(p || q) between the
distributions implicitly represented by the predicted and target outputs.
Find a simple expression for the error on training example i. You can write q for the
actual output of the network (no need to make the dependence on weight and activation
function explicit in this answer.)
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(c) If q(i) = f(w · x(i)) where f is your activation function, what is the SGD (stochastic
gradient descent) weight update rule when using the KL objective function above? For
simplicity, assume that x(i) and w are both scalars and write f ′ for the derivative of f.

Latent variables

6. Dana has a data set in which each element is a pair of floating-point numbers and thinks, from
domain knowledge, it is reasonable to model it as a mixture of Gaussians with 4 clusters. Match
each of the graphical models to the data set it is most suitable for. In the graphical models,
let X1 be a random variable modeling the first component of each data element and X2 be a
random variable modeling the second component. We will describe the four clusters using two
binary random variables C1 and C2, so that a setting of both variables determines the cluster.
When we write two random variable names in a single node, we mean that the node models
the joint distribution on those two variables directly.

Any continuous-valued random variable that is conditioned on nothing or only on discrete par-
ents can be assumed to have a normal distribution conditioned on the parents. Any continuous-
valued random variable A conditioned on continuous random variables B is assumed to be a
linear regression model in which A ∼ N(BW,Σ) where W is a weight matrix and Σ a fixed
covariance matrix.

Here are the data sets:
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For each of the graphical models below, indicate all of the data sets that could have been
generated for some setting of the parameters of that model.
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C1,C2

X1,X2

© A © B © C © D

C1,C2

X1 X2
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C1,C2

X1
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© A © B © C © D

Clustering bit vectors

7. We have a data set made up of N vectors, each containing d binary feature values. We want to
cluster it into K clusters. We believe the individual bits xj in a vector x are independent given
the cluster. That is:

C ∼ Multinoulli(π1, . . . ,πK)

Xj | C = k ∼ Bernoulli(θjk)
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Our goal is to find parameter set π, θ that maximizes the likelihood of a data set x(1), . . . , x(n),
each of which is a vector of d binary values.

Assume you start with a set of parameters π0 and θ0 and decide to apply EM.

(a) The E step computes variables γ(i)k = P(C = k | x(i), θ0,π0). Provide the formula for
computing their values.

The first M step is as follows:

π1
k :=

∑
i γ

(i)
k

N
θ1
jk :=

∑
i γ

(i)
k x

(i)
j∑

i γ
(i)
k

Recall that, for the general purposes of EM, we have defined

Q(θ, θold) =
∑
Z

p(Z | X, θold) logp(X,Z | θ)

where X are observable variables, Z are latent variables, and θ are parameters.

(b) What maximization problem is solved in the M step to get this result? Check all correct
entries below.

© π1, θ1 = arg maxπ,θ ECP(D | C,π, θ)
© π1, θ1 = arg maxπ,θ ECP(D,C | π, θ)
© π1, θ1 = arg maxπ,θ Q(〈θ,π〉, 〈θ0,π0〉)
© π1, θ1 = arg maxπ,θ

∑
C p(C | D, θ0,π0) logp(D,C | θ,π)

© π1, θ1 = arg maxπ,θ
∑
C p(C | D, θ,π) logp(D,C | θ0,π0)

(c) What happens if you begin EM with π0 = [.5, .5] and θ0
jk = 0.5 for all j and k?
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(d) Here is a concrete example in which we are trying to cluster 4 2-dimensional vectors
into 2 clusters using EM. Our data D = {10, 11, 11, 00}. In the first E step, we found that
γ
(1)
1 = γ

(2)
1 = γ

(3)
1 = 0.99999 and γ(4)

1 = 0.000001. (Note that γ(i)2 = 1 − γ
(i)
1 .)

As a result of the M step, approximately what are the values of the θ1 and π1 parameters?

(e) Approximately what is the likelihood p(D | θ1,π1)? Please write an expression that would
evaluate to a number, but you don’t need to calculate the value.
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(f) Compare the effects of a single-point cluster in this model to the effects of a single-point
cluster in a Gaussian mixture.

(g) Given the class of models described at the beginning of this question and a data set, are
there multiple maximum-likelihood solutions? If so, are they all desirable? Explain what
they are, or why it does not have them.

(h) Quinn is really attached to the gradient descent code from 6.867 and wants to use it
instead of EM to find the maximum likelihood values for π and θ. Is that a reasonable
plan? Why or why not? (Please ignore computation time.)

(i) Jessie thinks this model’s independence assumptions are too strong, and instead wants to
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interpret each bit vector as an integer in [1, . . . , 2d], and use the following model:

C ∼ Multinoulli(π1, . . . ,πK)

X | C = k ∼ Multinoulli(θ1k, . . . , θ2d,k)

Is this a reasonable model for clustering? If so, would EM be a good solution? If not,
explain why not.

Blurred lines

8. Chris has some data that looks like this.

-6 -4 -2 2 4 6

-40

-30

-20

-10

10

20

We’d like to model a conditional distribution P(Y | X). It seems like a bad idea to do a single
linear regression, so Chris has the idea of making a mixture of linear regressions. We will
consider a simple case, where the input x(i) is one-dimensional, there are only two components
in the mixture (modeled with random variable C with values in {0, 1}), and the variance σ2 is
known. Here is the distributional model.

C ∼ Bernoulli(π)

Y | X,C ∼ Normal(w0c +w1cx,σ2)

So, this model has 5 parameters: π,w00,w01,w10,w11.
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(a) Assume we are given dataD = {(x(i),y(i))} and parameter guesses θ̂ = (π̂, ŵ00, ŵ01, ŵ10, ŵ11)

Let γ(i)c be the probability that training example i is assigned to component c, that is, for
all i,

γ
(i)
c = P(C(i) = c | x(i),y(i); θ̂)

Write the expression used in the E step to compute γ(i)c (c ∈ {0, 1}) from the data and θ̂.

(b) Describe an optimization problem that must be solved to compute new values for ŵ from
the γ values and D.
It should be a detailed expression in terms of π, w, γ(i), x(i) and y(i), but you don’t
have to solve for the new w.
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Great responsibility

9. You may remember that non-parametric models are actually models with lots of parameters,
whose capacity can adjust to fit the amount of data and its apparent complexity. With such
great power comes great responsibility: to avoid overfitting.

For each of the following non-parametric models, describe a parameter in the set-up that can
be varied to control complexity and whether it should be increased or decreased to obtain a
simpler model or state that there is not a problem with overfitting and explain briefly why.

(a) Gaussian processes

(b) Bayesian clustering with uncertainty about the number of clusters

(c) Decision trees

Processing Gaussians

10. Recall that a Gaussian process is parameterized by a covariance function K(x, x ′) and a mean
function f that we will assume to be f(x) = 0. Suppose we are using a covariance function of
the form

K(x, x ′) = θ exp(−
1

2`2
(x− x ′)2)

where x, and x ′ are real valued scalars, ` denotes the length scale and θ denotes a variance
multiplier. Each of the plots below shows a random function generated from a GP with hyper-
parameters (θ, `).

We sampled functions from 4 different GP models.
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For each parameter pair, select the plot that represents a random draw from the GP defined by
those parameters.

i. (θ, `) = (2.2, 0.3) © A © B © C © D

ii. (θ, `) = (2.2, 1.0) © A © B © C © D

iii. (θ, `) = (1.0, 1.0) © A © B © C © D

iv. (θ, `) = (1.0, 0.3) © A © B © C © D


