
Name: ________________ _ 

Supervised learning 

1. (6 points) For each question in this section, please select the correct answer(s) and provide a
short explanation in the box.

Overparameterization 

(a) (1 point) Every model with more parameters than number of training data points will
have poor generalization.

0 TRUE O FALSE

Memorization and nearest neighbours 

Suppose we have a data space X = JR.d and binary labels 1J = {-1, l}. Given a dataset 

'.D = {(xi,1Ji)}�1 � Xx 1,/, let fk(x) = fk(x;'.D) denote the kNN classifier that makes 
predictions using the uniform voting rule (i.e., predict whatever is the most common 
label of the nearest neighbours). In the event of a tie, assume we break ties by always 

predicting fk( x) = 1. 

Recall that we say that the kNN classifier memorizes '.D if fk(xd = '!:Ii for all i = 1, . . .  , m. 

We define the memorization capacity of fk to be the largest integer mk such that fk mem
orizes all datasets of size mk with distinct x values (i.e., Xi # Xj whenever i # j). 

(b) (1 points) We have m1;,:: m2;,:: m3.

0 TRUE O FALSE 

Stochastic gradient descent 

(c) (2 points) Consider ordinary least squares (OLS) on a dataset X E IR.nxd , with n obser
vations that are d-dimensional, and the target vector y E IR.n :

L(w) = IIY- Xwll
2
-

Suppose we wish to minimize L( w) using SGD. W hich of the following is true: 

-
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© SGD randomly selects rows of X and the corresponding coordinates of y.
© SGD randomly selects columns of X and the corresponding coordinates of w.
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Convergence of Deep Networks

0
i

0
i

2. (5 points) Consider two neural networks represented by functions, ŷi
t = fθt (xi), ỹi

t = gφt (xi),
where xi is the input, ŷi

t, ỹi
t denote the outputs of the neural network at the tth training iteration

and θt, φt are the parameters of the network at the tth training iteration. Let the training dataset
be {xi, yi}i

N
=1.

(a) (3 points) Lets assume that we initialize the weights of the network such that ŷ == ỹ ∀i ∈
[1, N]. Next, we train both the networks to convergence using SGD. Would these two
networks have the same performance on the test set sampled from the same distribution
as the training set? Please explain.

(b) (2 points) If the answer to the above question is yes, then would the performance be
the same on a test set sampled from a different distribution than the training dataset?
If the answer was no, then if the initialization condition was stronger, ŷ0

i == ỹ0
i for all

possible xi (even beyond the training dataset), then would the two networks converge
to parameters that would yield the same accuracy on the test sampled from the same
distribution as the training set?
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use the following block coordinate ascent algorithm to find a setting of the variational
parameters φ1, . . . ,φN that closely approximates the posterior in question:

1. Initialize variational parameters φ1, . . . ,φN and parameters θ of p.
2. For each observation xi, compute the ELBO L(xi; θ,φi) = Eq[logp(z1, z2, xi; θ)] −
Eq[logq(z1, z2;φi)]

3. Holding θ fixed, update the variational parameterφi to maximize the ELBO as shown
below:

φi = argmax
φ

L(xi; θ,φ)

4. Holding φi’s constant (1 6 i 6 N), update the variational parameter θ to θ∗ that
maximizes the sum of the ELBOs as shown below:

θ∗ = argmax
θ

N∑
i=1

L(xi; θ,φi)

5. Repeat steps 2 − 4 until the ELBO converges

For Step 4 in this procedure to be equivalent to the M-step update in the EM algorithm,
what must be true about the distribution q(z1, z2;φi)? Explain your answer.
Hint: Recall that the goal of the M-step of the EM algorithm is to find new parameters
θ that maximize the log-likelihood over all the data - observed and latent - given the
previous parameters θ ′ i.e:

argmax
θ

N∑
i=1

∫ ∫
p(z1, z2|xi; θ ′) logp(z1, z2, xi; θ)dz1 dz2.

Solution:
As shown in class, the EM algorithm is a special case of variational inference corre-
sponding to when q(z1, z2;φi) = p(z1, z2|x;θ ′). The proof is given below:
Per the hint, recall that the goal of the M-step of the EM algorithm is to update the
parameters θ to maximize the log-likelihood of the entire data given the previous
parameters θ ′, i.e:

argmax
θ

N∑
i=1

∫ ∫
p(z1, z2|xi; θ ′) logp(z1, z2, xi; θ)dz1 dz2

and further note that we can rewrite the term inside the maximization as an expecta-
tion over p(z1, z2|x;θ ′):

Ep(z1,z2|x;θ ′)[logp(z1, z2, x; θ)]
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Now, we can note that this expression is precisely equal to the first term of the ELBO
when q(z1, z2;φi) = p(z1, z2|x;θ ′). However, there is an additional term of the ELBO

−Eq[logq(z1, z2;φi)] = −Ep(z1,z2|x;θ ′)[logp(z1, z2|x;θ ′)]

which is dependent on θ ′, rather than θ. Thus, this is a constant which does not affect
the optimal value of θ and the conclusion follows.

(c) (6 points) Suppose Dr. Ference wants to apply the algorithm mentioned in Part (b) using
the family of 2D Gaussians q(z1, z2) with full covariance matrices Σ. Are there always
parameters that make the bound given by the ELBO tight? Justify your answer by either
describing a distribution q(z1, z2) where the ELBO is tight, or by arguing that the lower
bound cannot actually be attained.

You may assume without proof the following identities:

Product of Gaussians (Special): Suppose for random vectors a and b, p(a) = N(µ1,Σ1)

and p(b|a) = N(Ma + µ2,Σ2), where M is a weight matrix. Then the product of the two
PDFs, p(a)p(b|a), is also Gaussian. The covariance matrix is non-diagonal if M and Σ2

are non-zero.

Gaussian Conditionals: Suppose we have random vectors a and b, where [a,b]T follows a
multivariate Gaussian distribution. Then the conditional probability p(a|b) is also Gaus-
sian.
© Yes © No

Solution: Yes, the ELBO can always be made tight. Since we take q(z1, z2) to be
the family of 2D Gaussians, it suffices to show that the posterior p(z1, z2|x) is also
Gaussian.
Let us demonstrate that the PDF of the posterior p(z1, z2|x) is Gaussian. First, we note
that the joint distribution p(z1, z2, x) can be factored as

p(z1, z2, x) = p(x|z1, z2)p(z2|z1)p(z1)

Since p(z1), p(z2|z1), and p(x|z1, z2) are all Gaussian, we can apply the special product
of Gaussians identity twice to get that p(z1, z2, x) is also Gaussian with some mean µ ′

and covariance matrix Σ ′.
Now, we can apply the Gaussian conditional identity with a = [z1, z2]

T and b =

x. Since the identity states that the conditional distribution p(a|b) is also Gaussian,
it follows that there exists some q(z1, z2) = p(z1, z2|x) (since we allow q to be an
unrestricted multivariate Gaussian) where reverse KL-divergence is 0 and the ELBO
is thus a tight bound.

(d) (5 points) Now, suppose Dr. Ference wants to instead use a q that satisfies the mean-field
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assumption - that is, a function that can be factored as q(z1, z2) = q(z1)q(z2). Under this
assumption, are there always parameters for q(z1, z2) that make the bound given by the
ELBO tight? Justify your answer by either describing a distribution q(z1, z2) = q(z1)q(z2)

where the ELBO is tight, or by arguing that the lower bound cannot actually be attained.
© Yes © No

Solution: No, there are not always parameters which make the ELBO tight. In order
for this to happen, we must have that KL(q(z1, z2)||p(z1, z2|x)) = 0, which only occurs
when q(z1, z2) = p(z1, z2|x).
For most values for the parameters in p, the posterior p(z1, z2|x) will not be able to
factorize. For example, consider any case in which G = 0 andw 6= 0. Since G = 0, x is
independent of z1 and z2 and thus p(z1, z2|x) = p(z1, z2). Then, since w 6= 0, z1 and z2

are not independent in p and as a result we cannot factorize p into two independent
distributions q(z1) and q(z2).
To show this fact more rigorously, let us examine the pdf of the joint distribution
p(z1, z2, x) and show that the corresponding covariance matrix is non-diagonal. Since
we are considering a scenario whereG = 0, the distribution p(z1, z2, x) can be factored
as p(z1, z2)p(x). Thus, it suffices to show under these settings that the covariance
matrix of p(z1, z2) is non-diagonal. From the hint in the previous question, we have
that

p(z1, z2) = p(z1)p(z2|z1) = N

([
µ1

wµ1 + µ2

]
,
[
σ−2

1 + σ−2
2 w2 −σ−2

2 w

−σ−2
2 w σ−2

2

]−1)

Since −σ−2
2 w 6= 0 and the inverse of a non-diagonal matrix is also non-diagonal, z1

and z2 are not independent. It follows that there exists no q such that p(z1, z2|x) =

q(z1)q(z2), which means that for this set of example parameters the ELBO cannot be
tight.
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PCA as an autoencoder

5. (6 points) An autoencoder learns to compress data from the input features into a low-dimensional
representation, and then decompress that representation into an approximation that closely
matches the original features. Consider a regularized linear autoencoder with the following
objective:

L(U,V) =
N∑
i=1

1
2
‖xi −UVxi‖2 + λ1‖U‖2

F + λ2‖V‖2
F,

where xi is the feature vector of the ith example and U,V are the weights to be learned from
the data. What are the values of λ1, λ2 that recover PCA? Write down your answers and ex-
planations in the box.

Solution: λ1 = λ2 = 0 recovers PCA. If we view PCA as minimizing projection error, it
has the same objective as the regularized autoencoder.
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(b) (4 points) Recall we’ve initialized w0 = 0. Show by induction that we can write the t-th
iteration weight vector wt as

wt =
2γ
n

t−1∑
j=0

(
I −

2γ
n
XTX

)j
XTy.

Solution: We will prove this via induction. To establish the base case, note that by
part (b), we know that w1 = 2γ

nX
Ty, which is also equal to

γ 2
n

∑0
j=0
(
I − γ 2

nX
TX

)j
XTy, as any matrix to the zeroth power is the identity.

Therefore, the base case holds.
To see the inductive case, note that

wt = wt−1 −
2γ
n
XT (Xwt−1 − y)

=

(
I −

2γ
n
XTX

)
wt−1 +

2γ
n
XTy.

Now, assume for the sake of induction that wt = γ 2
n

∑t−1
j=0

(
I − γ 2

nX
TX

)j
XTy.

Then, we have that

wt =

(
I −

2γ
n
XTX

)γ 2
n

t−2∑
j=0

(
I − γ

2
n
XTX

)j
XTy

+
2γ
n
XTy

= γ
2
n

t−1∑
j=1

(
I − γ

2
n
XTX

)j
XTy +

2γ
n
XTy

= γ
2
n

t−1∑
j=0

(
I − γ

2
n
XTX

)j
XTy,

as desired.
Thus, as the inductive case holds, and the base case holds, the overall statement holds
by induction.
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(c) (2 points) For γ > 0 such that ‖γ 2
nX

TX‖ < 1, show that

w∗ = lim
t→∞wt =

(
XTX

)−1
XTy.

Recall that forA such that ‖A‖ < 1,
∑∞
i=0A

i = (I −A)−1.

Solution: At the risk of a slight abuse of notation, let w∞ = limt→∞wt. Then, for γ
such that ‖γ 2

nX
TX‖ < 1 (note that this is feasible—e.g., there exists at least one γ

such that this is true—asXTX has strictly non-negative eigenvalues), we have that

w∞ = lim
t→∞γ 2

n

t−1∑
j=0

(
I − γ

2
n
XTX

)j
XTy

= γ
2
n

 ∞∑
j=0

(
I− γ

2
n
XTX

)jXTy

= γ
2
n

(
I−

(
I− γ

2
n
XTX

))−1

XTy

= γ
2
n

(
γ

2
n
XTX

)−1

XTy

=
(
XTX

)−1
XTy

Note that this is also simply the OLS solution to regression, which makes sense as
gradient descent converges to the optimal solution for OLS regression.

(d) (4 points) Let us decompose our data matrix X according to singular value decomposi-
tion: X = UΣV T , such that U ∈ Rn×n,V ∈ Rd×d are orthogonal (e.g., UUT = I)
matrices, and Σ ∈ Rn×d is a rectangular diagonal matrix with strictly positive entries
(generally, you can only assume its entries are non-negative, but recall we’ve assumedX
is full-rank here, so we can assume they are strictly positive). Show that we can express
the OLS solution w∗ =

(
XTX

)−1
XTy as

w∗ =

d∑
j=1

(
1
σj

)(
uTj y

)
vj,

where uj,vk indicates the j-th, k-th column of U ,V , respectively.

Page 14



Name:

Solution: First, note that

w∗(λ) =
(
V ΣTUTUΣV T

)−1
V ΣTUTy

=
(
V
(
ΣTΣ

)
V T
)−1

V ΣTUTy

= V
(
ΣTΣ

)−1
V TV ΣTUTy

= V
(
ΣTΣ

)−1
ΣTUTy

Note in this problem that these matrices are not generally commutable, so we cannot,
for example, cycle factors of (ΣTΣ)−1 around in this product. Similarly, as Σ is not
square, we cannot invert it nor is it symmetric.

However, upon examining the structure of
(
ΣTΣ

)−1
ΣT , we see

w∗ =

r∑
j=1

1
σj

(
uTj y

)
vj,

as desired.

(e) (2 points) Applying a similar derivation towt in (b), we can also representwt using SVD
of the data matrix. We skip the derivation and directly give the result, which is compared
with w of original OLS in (d)

A. Original OLS: w =

d∑
j=1

1
σj

(
uTj y

)
vj,

B. Early-stopped OLS: wt =

d∑
j=1

1 − (1 − 2γ
n σ

2
j)
t

σj
(uTj y)vj.

Recall that we typically associate small singular values (and their associated vectors) with
noise in the data, rather than signal.
Which of the two weight vectors, A or B, is more likely to provide a solution less depen-
dent on data noise? Explain your answer.

Solution: Option B, as it will favor small singular values less than option A.
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8. (6 points) Consider a covariate shift domain adaptation problem. We have a large number of
labeled source domain examples, effectively having access to PS(x, y) = PS(x)PS(y|x). We also
have a large number of unlabeled examples from the target domain, thus effectively PT (x).
You can assume that the support of the target distribution is contained within the support of
the source distribution. A friend of ours was kind enough to train a Bayes optimal domain
classifier for us. But, unfortunately, in training the classifier, they used twice as many target
examples as source examples.

(a) (2 points) Write down an expression for the friend’s domain classifier Q(d|x), d = S, T .

(b) (4 points) You are given a loss function Loss(y,h(x)), where h(x) is a classifier we wish
to estimate. Provide an expression for the target risk of h only as a function of the source
distribution and the friend’s domain classifier.

Covariate Shift
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10. (12 points) Let’s look at a basic VAE model, abstractly, and figure out some properties of the
associated ELBO criterion. To this end, let the generative model be P0(z)P(x|z), where P0(z)

remains fixed. Our posterior approximation isQ(z|x) (typically parametric) which we have to
set conditioned on each observed x. We also assume the data distribution Pd(x) from which
the training data is sampled from. You can think of this as assuming that we have a very large
training set, effectively the same as using the distribution Pd(x) directly. The ELBO criterion
in this case is

ELBO(Q;P) = Ex∈Pd(·)
[
Ez∼Q(·|x) logP(x|z) + KL(Q(·|x)‖P0(·))

]
(a) (2 points) Suppose we place no constraints on the form that the posterior distribution

Q(z|x) takes and find Q∗ = arg maxQ ELBO(Q;P). Provide an expression for Q∗(z|x).

(b) (3 points) Briefly explain why the solutionQ∗(z|x) does not simply concentrate around a
single point z∗ = arg maxz logP(x|z) for each x?

(c) (3 points) Suppose we have set Q(z|x), not necessarily optimally, and find
P∗ = arg maxPx|z

ELBO(Q;P). Provide an expression for the resulting P∗(x|z).

(d) (4 points) Assume now that P(x|z) = N(x;µz, 1), z = 0, 1, and x ∈ R (scalar). P0(z) = 0.5
for z = 0, 1. In other words, we are estimating a simple equally weighted mixture of two
Gaussians with unit variances. Describe what family of restricted posterior approxima-
tions should we use so that the ELBO estimation criterion would reduce to finding means
µz, z = 0, 1, as in k = 2 means clustering?

VAE
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Solution:

f∗ = E(Y|X) = Eπ|X[E(Y|π,X)] =
m∑
i=1

P(π = i|X)E(Y|π = i,X) =
m∑
i=1

P(π = i,X)
P(X)

wiX

=

∑m
i=1

pi
σi

exp( −1
2σ2
i

(X− µi)
2)wiX∑m

j=1
pj
σj

exp( −1
2σ2
j

(X− µj)2)

(c) Now, suppose we do not have the knowledge of the joint distribution of X, Y. But we
observe N data points, (xn,yn) for 1 6 n 6 N. Using these observations, we would like
to identify f∗. As a start, we would like to understand whether simple linear regression
would be a good idea or not. That is, we want to find a function f(x) = a∗Nx+ b

∗
N so that

(a∗N,b∗N) are solutions to

minimize
N∑
n=1

(yn − axn − b)2 over a,b ∈ R.

Identify limiting quantities, a∗∞ = limN→∞ a∗N as well as b∗∞ = limN→∞ b∗N. You may
write your results using statistical quantities of X and Y (e.g. expectation, variance, etc).

Solution: This is a simple linear regression problem, the solutions for a∗N and b∗N are
given by

a∗N =
1
N

∑N
i=1(xi − x̄)(yi − ȳ)

1
N

∑N
i=1(xi − x̄)

2
, b∗N = ȳ− a∗Nx̄.

When N→∞,

x̄→ E(X), ȳ→ E(Y),
1
N

N∑
i=1

(xi−x̄)(yi−ȳ)→ Cov(X, Y) and
1
N

N∑
i=1

(xi−x̄)
2 → Var(X).

So we have

a∗∞ =
Cov(X, Y)

Var(X)
and b∗∞ = E(Y) − a∗∞E(X).

(d) Given that we understand a∗∞ and b∗∞, let us examine the performance of linear regression
(assuming N = ∞). To that end, let us consider a concrete scenario where m = 2, p1 =

p2 = 1/2, w1 = 1, w2 = −1, µ1 = θ, µ2 = −θ for some θ > 0 and σ1 = σ2 = 1.
What are the values of a∗∞ and b∗∞ for this specific setting? Will the linear estimator
trained with infinitely many observations yield good predictions for this setting (yes/no)?

Solution: We have

E(XY) = EπE(XY|π) =
1
2
E(XY|π = 1)+

1
2
E(XY|π = 2) =

1
2
E(X2|π = 1)+

1
2
E(−X2|π = 2) = 0.
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Since E(X) = 0, we have Cov(X, Y) = E(XY) − E(X)E(Y) = 0. Hence

a∗∞ = 0 and b∗∞ = E(Y) = θ.

This means that linear estimator is not a good choice even with infinitely many ob-
servations.
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Solution:

LD(w) =
1
n

n∑
i=1

(yi −w0 −

p∑
j=1

wjxi,jIi,k)
2

(c) (4 points) Recall that for ridge regression, one minimizes the regularized squared loss:

LR(w) =
1
n

n∑
i=1

(
yi −w0 −

p∑
j=1

wjxi,j

)2
+ λ

p∑
j=1

w2
j

Calculate the gradient for the regularized squared loss, LR(w) with respect to a particular
parameter wk (k 6= 0). That is, compute ∂L

R(w)
∂wk

.

Solution:
∂LR(w)

∂wk
=

1
n

n∑
i=1

−2[(yi −w0 −

p∑
j=1

wjxi,j)xi,k] + 2λwk

(d) (10 points) We now investigate the relationship between this dropout formulation and
ridge regression. To this end, we provide the following background information.
Background (stochastic optimization): suppose we want to minimize f(w), where f is a
strictly convex function. Let w∗ be the optimal solution.

• The usual gradient descent algorithms suggest that at each time step t,

wt+1 = wt − αt
∂f(wt)

∂w
.

With a proper step size αt, we have wt → w∗ as t→∞.
• Consider the following generalized gradient descent algorithm.

wt+1 = wt − αtg(wt).

Suppose that g(w) is a (possibly randomized) function such that E[g(w)] = ∂f(w)
∂w

for any w (i.e., the expected value of g(w) equals the gradient of f(w)). Then, with
proper step size αt, wt also converges to w∗ as t→∞.

For the purposes of this problem, assume that for each 1 6 j 6 p, 1
n

∑n
i=1 x

2
i,j = 1 (i.e. our

features are standardized).
Using the information given above, as well as your answers in (a)-(c), argue that running
gradient descent on the dropout squared loss LD(w) converges to w∗, where w∗ is the
solution to ridge regression with a particular λ. In addition, identify the value λ in terms
of q and the dataset {(xi,yi)}ni=1.
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Solution: We first compute the gradient of LD(w) w.r.t wk.

∂LD(w)

∂wk
=

1
n

n∑
i=1

−2[(yi −w0 −

p∑
j=1

wjxi,jIi,j)xi,kIi,k]

=
1
n

n∑
i=1

−2[(yi −w0)xi,kIi,k − (

p∑
j=1

wjxi,jIi,j)xi,kIi,k].

Then, we have

E[
∂LD(w)

∂wk
] =

1
n

n∑
i=1

−2[(yi −w0)xi,k − xi,k(

p∑
j=1

wjxi,jE[Ii,jIi,k])]

=
1
n

n∑
i=1

−2[(yi −w0)xi,k − xi,k(wkxi,k
1

1 − q
+

p∑
j=1,j6=k

wjxi,j)]

=
1
n

n∑
i=1

−2[(yi −w0 −

p∑
j=1

wjxi,j)xi,k]

+ (
2q

(1 − q)n

n∑
i=1

x2
i,k)wk.

Comparing this with the gradient of ridge regression from (c), and using the back-
ground information provided, we see that the dropout linear regression effectively
solves the ridge regression with λ being q

1−q for each w2
k term. That is, gradient de-

scent on LD(w) converges to w∗, where w∗ solves the following ridge regression

LR(w) =
1
n

n∑
i=1

(
yi −w0 −

p∑
j=1

wjxi,j

)2
+

p∑
j=1

( q

1 − q

)
w2
j
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(c) (6 points) Suppose we instead define the bag of words vector z using indicators. That is,
the ith element of z is a 1 if the ith word appears anywhere in the input text and is a 0
otherwise.
Suppose we want the output of the RNN we described earlier to match the output of the
linear model on this newly defined z. Describe a way of setting the RNN weights (A, B,
and c), bias d, and initial state s0 in terms of α to do this.

Solution: We again make the hidden state s have size |V |. One setting that would
work here is s0 = 1|V |, A = I|V |, B = −I|V |, c = −α, d =

∑
i αi.
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Solution:

argmax
w

p(w0,w1, ...,wT ) = argmax
w

logp(w0,w1, ...,wT )

= argmin
w

w2
0 +

T∑
t=1

(wt −wt−1)
2

The expression above must be non-negative, so it is clearly minimized by w0 = w1 =

... = wn = 0, which sets it to zero.

(c) (6 points) Calculate the posterior distribution of the parameters p(w0,w1, ...,wT |{(xt,yt)}Tt=1).
Feel free to ignore proportionality constants in your answer.

Solution:

p(w0,w1, ...,wT |{(xt,yt)}Tt=1) = C2p({(xt,yt)}Tt=1|w0,w1, ...,wT )p(w0,w1, ...,wT )

= C2

(
T∏
t=1

p(yt|xt,wt)

)
p(w0,w1, ...,wT )

= C3 exp

(
−

1
2

(
w2

0 +

T∑
t=1

[(yt −wtxt)
2 + (wt −wt−1)

2]

))
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(d) (6 points) Assume xt > 0 for all t. Show how to calculate the set of parametersw0,w1, ...,wT
that maximizes p(w0,w1, ...,wT |{(xt,yt)}Tt=1); i.e. the mode of the posterior. You may as-
sume you have access to a linear system solver to solve for v in Av = b, for an invertible
matrix A and a vector b. If your answer invokes this solver, clearly state what A and b
are and why A is invertible.
Hint: If a matrixA is symmetric and for each row i,Aii >

∑
j6=i |Aij|, thenA is invertible.

Solution:

argmax
w

p(w0,w1, ...,wT |{xt,yt}T1 ) = argmax
w

logp(w0,w1, ...,wT |{xt,yt}T1 )

= argmin
w

w2
0 +

T∑
t=1

[(yt −wtxt)
2 + (wt −wt−1)

2]

Denote the last term L. Note that L is convex in each wt, 0 6 t 6 T . Take derivatives
and set them to zero:

∂L

∂w0
= 2w0 − 2(w1 −w0) = 0 =⇒ 2w0 −w1 = 0

∂L

∂wT
= −2(yT −wtxt)xT + 2(wT −wT−1) = 0 =⇒ −wT−1 + (x2

T + 1)wT = xTyT

For t = 1, ..., T − 1,

∂L

∂wt
= −2(yt −wtxt)xt + 2(wt −wt−1) − 2(wt+1 −wt) = 0

=⇒ −wt−1 + (x2
t + 2)wt −wt+1 = xtyt

Plug this system of equations in w0, ...,wT in the solver in order to get a solution.
Let A be the matrix corresponding to this system of equations in w0, ...,wT . For sim-
plicity, let the rows and columns of A be indexed starting at 0. Then the matrix has
the following rows:

• On row 0 (corresponding to ∂L
∂w0

): A0,0 = 2, A0,1 = −1, all other elements zero.

• On rows 1 ... T − 1 (corresponding to ∂L
∂wt

for 0 < t < T ): At,t−1 = −1, At,t =
x2
t + 2, At,t+1 = −1, all other elements zero.

• On row T (corresponding to ∂L
∂wT

): AT ,T−1 = −1, AT ,T = x2
T + 1, all other ele-

ments zero.

Clearly, if xt > 0 for all t, on every row the diagonal element is larger than the sum
of the absolute values of all other elements. A is also symmetric. Therefore, A is
invertible, so there exists a unique solution to the system of equations. So it is possible
to find w0,w1, ...,wT .
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Classification (Yes-no Questions) 

16. (6 points) For each question in this section, please select the correct answer and provide a 
short explanation in the box.

(a) (2 points) Recall that a risk function is defined as the expected loss of the classifier h E JC 

with respect to the data distribution IP over X x 1}, that is,

L(h) := JE[!(h, X, Y)] 

{
1, if h(X)-=/= Y 

For the 0/1 loss, defined as io;1 =
0, if h(X) = Y 

0 Yes O No 

Solution: Yes. 

, the risk is: L(h) = IP'(h(X) -=/= Y). 

L(h) = JE[eo;1 (h, X, Y)] = 1 x IP'(h(X) -=/= Y) + 0 x IP'(h(X) = Y) = IP'(h(X) -=/= Y) 

(b) (2 points) With enough training data, the training error of a nearest neighbor classifier
always goes down to zero.
0 Yes O No

Solution: No. While the training error always goes to O for 1-nearest neighbor, for 
the general case, the training error is non-zero. (We also give full credit if the answer 
explicitly assumes 1-NN and gives correct reasoning.) 

(c) (2 points) In general, for small training sets, we are likely to reduce the bias of the classifier
by adding a regularization penalty to the loss function.
0 Yes O No

Solution: No. Regularization prevents over-fitting. It reduces the variance of the 
estimator in favor of introducing some bias. 

-
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Classification (Multiple Choice) 

17. (3 points) For each question in this section, please select the correct answer and provide a
one-sentence explanation in the box.

Loss functions 

(a) (3 points, Check all that apply.) Suppose we are building a linear classification model
h(x) = w T x on linearly separable data, minimizing which of the loss functions below
will force lwl--+ oo?
0 Logistic Loss: L(-y, h(x)) = log(l + exp(--yh(x)))

0 Hinge Loss: L(-y, h(x)) = max{O, 1 - -yh(x)}

{ 
0 , if -y = h( x) 

0 0 -1 Loss L(-y, h(x)) =
1 , if -y # h( x) 

0 Exponential loss: L(-y, h(x)) = exp(--yh(x)) 

Solution: Exponential loss and logistic loss. They don't have a tight lower bound 
even there's no misclassification. 
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To reduce the output size of the convolutional layer to a 0-1 classification output, Bob
decides to use a global average pooling layer (which simply averages all of the outputs
from the previous layer), with another step function based activation after the layer.

(b) (5 points) Find a possible input sequence that would make the network output 1 but does
not have “101” as a substring.

Solution: Any sequence of 6 bits that has “111” as a subsequence and does not have
“101” as a subsequence is acceptable. We note that passing in this sequence leads
to a preactivation of 0.5 > 0, which the step function turns to 1. Since all outputs
before the global average pooling layer are nonnegative, any positive output from the
convolutional layer will propagate through, so this subsequence will be misclassified
as containing a “101”.

(c) (5 points) Modify one of the weights (or the bias) of the convolution filter so that it works
as desired (and no longer fails on the input sequence found in part b).

Solution: If we consider all other sequences of 3 bits, we see that the network has the
correct classification for everything other than “111”. To fix it’s classification for this
point, we must penalize against a ‘1’ in the central position, so we should make w2

negative. Specifically, any modification that changes to w2 to a value w2 6 −0.5 is
acceptable. For part d, we use w2 = −1 as an example.

(d) (3 points) Bob decides that he wants his network to be able to take into account sequences
with variable finite lengths (e.g. a 20-bit sequence). Does Bob need to make any changes
to his network architecture (which ran on 6-bit inputs)? Write a one sentence explanation
as to what the change would be (if needed) or why a change is not needed.

Solution: No change is needed since the global average pooling layer works with
any number of inputs. As long as one of the inputs to the average pooling layer is
nonzero, the output will be 1 (since all the inputs to the layer are nonnegative).
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Solution:

(d) (2 points) How many classification errors does it make on the training set?

Solution: 1
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