
Name: ________________ _ 

Supervised learning 

1. (6 points) For each question in this section, please select the correct answer(s) and provide a
short explanation in the box.

Overparameterization 

(a) (1 point) Every model with more parameters than number of training data points will
have poor generalization.

0 TRUE O FALSE

Memorization and nearest neighbours 

Suppose we have a data space X = JR.d and binary labels 1J = {-1, l}. Given a dataset 

'.D = {(xi,1Ji)}�1 � Xx 1,/, let fk(x) = fk(x;'.D) denote the kNN classifier that makes 
predictions using the uniform voting rule (i.e., predict whatever is the most common 
label of the nearest neighbours). In the event of a tie, assume we break ties by always 

predicting fk( x) = 1. 

Recall that we say that the kNN classifier memorizes '.D if fk(xd = '!:Ii for all i = 1, . . .  , m. 

We define the memorization capacity of fk to be the largest integer mk such that fk mem­
orizes all datasets of size mk with distinct x values (i.e., Xi # Xj whenever i # j). 

(b) (1 points) We have m1;,:: m2;,:: m3.

0 TRUE O FALSE 

Stochastic gradient descent 

(c) (2 points) Consider ordinary least squares (OLS) on a dataset X E IR.nxd , with n obser­
vations that are d-dimensional, and the target vector y E IR.n :

L(w) = IIY- Xwll
2
-

Suppose we wish to minimize L( w) using SGD. W hich of the following is true: 

-
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© SGD randomly selects rows of X and the corresponding coordinates of y.
© SGD randomly selects columns of X and the corresponding coordinates of w.
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Convergence of Deep Networks

0
i

0
i

2. (5 points) Consider two neural networks represented by functions, ŷi
t = fθt (xi), ỹi

t = gφt (xi),
where xi is the input, ŷi

t, ỹi
t denote the outputs of the neural network at the tth training iteration

and θt, φt are the parameters of the network at the tth training iteration. Let the training dataset
be {xi, yi}i

N
=1.

(a) (3 points) Lets assume that we initialize the weights of the network such that ŷ == ỹ ∀i ∈
[1, N]. Next, we train both the networks to convergence using SGD. Would these two
networks have the same performance on the test set sampled from the same distribution
as the training set? Please explain.

(b) (2 points) If the answer to the above question is yes, then would the performance be
the same on a test set sampled from a different distribution than the training dataset?
If the answer was no, then if the initialization condition was stronger, ŷ0

i == ỹ0
i for all

possible xi (even beyond the training dataset), then would the two networks converge
to parameters that would yield the same accuracy on the test sampled from the same
distribution as the training set?
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Disease Diagnosis with Hierarchical Factor Analysis 

4. (21 points) Dr. I. N. Ference has recently noticed an unusually high influx of patients exhibiting
symptom x and starts to suspect the presence of a hidden variable, disease z2. Furthermore,
Dr. Ference also hypothesizes that the existence of gene z1 makes a person much more
predisposed to con-tract disease z2. Dr. Ference' s hypothesis can be represented using the
simplified hierarchical model below, with a single gene of interest and disease:

Dr. Ference thinks that a reasonable first step is to evaluate the efficacy of this simple hier­
archical setup in the case where z1 is a Gaussian variable (some measurement of how much 
gene z1 is expressed) that can cause disease Z2 to be expressed with varying intensities. Then, 
the effects of z1 and z2 both contribute to the intensity of the observed symptom x. In this 
generative model, the observations x are drawn by the following procedure: 

• Sample z1 ~ N(µ1, q). 

• Draw z2 ~ N(wz1 + µ2, CY�) (i.e. p(z2lz1, 0) = N(wz1 + µ2, CY�), where 0 = {w , µ2, CY2} 

• For each observation x, draw x ~ N(Gz + µ3, �), where z = [z1,z2J T and G is a 1 x 2 
weight matrix. 

(a) (4 points) Suppose Dr. Ference's colleague supplies their best guess for the posterior
p(z1, z2lx), which we denote asp(z1,z2). Without directly computing the posteriorp(z1, z2lx),
how could we use p(z1, Zi) to obtain a lower bound on the marginal likelihood p(x)?

(b) (6 points) Suppose we are provided with N observations xi, ... , XN and a general distri­
bution q (z1, z2; <l>d with variational parameters <!>1, ... , <l>N that we will use to approxi­
mate the posterior p(z1, z2lxi; 0) with appropriate parameters 0, for 1 � i � N. We can
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use the following block coordinate ascent algorithm to find a setting of the variational
parameters φ1, . . . ,φN that closely approximates the posterior in question:

1. Initialize variational parameters φ1, . . . ,φN and parameters θ of p.
2. For each observation xi, compute the ELBO L(xi; θ,φi) = Eq[logp(z1, z2, xi; θ)] −
Eq[logq(z1, z2;φi)]

3. Holding θ fixed, update the variational parameterφi to maximize the ELBO as shown
below:

φi = argmax
φ

L(xi; θ,φ)

4. Holding φi’s constant (1 6 i 6 N), update the variational parameter θ to θ∗ that
maximizes the sum of the ELBOs as shown below:

θ∗ = argmax
θ

N∑
i=1

L(xi; θ,φi)

5. Repeat steps 2 − 4 until the ELBO converges

For Step 4 in this procedure to be equivalent to the M-step update in the EM algorithm,
what must be true about the distribution q(z1, z2;φi)? Explain your answer.
Hint: Recall that the goal of the M-step of the EM algorithm is to find new parameters
θ that maximize the log-likelihood over all the data - observed and latent - given the
previous parameters θ ′ i.e:

argmax
θ

N∑
i=1

∫ ∫
p(z1, z2|xi; θ ′) logp(z1, z2, xi; θ)dz1 dz2.
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(c) (6 points) Suppose Dr. Ference wants to apply the algorithm mentioned in Part (b) using
the family of 2D Gaussians q(z1, z2) with full covariance matrices Σ. Are there always
parameters that make the bound given by the ELBO tight? Justify your answer by either
describing a distribution q(z1, z2) where the ELBO is tight, or by arguing that the lower
bound cannot actually be attained.

You may assume without proof the following identities:

Product of Gaussians (Special): Suppose for random vectors a and b, p(a) = N(µ1,Σ1)

and p(b|a) = N(Ma + µ2,Σ2), where M is a weight matrix. Then the product of the two
PDFs, p(a)p(b|a), is also Gaussian. The covariance matrix is non-diagonal if M and Σ2

are non-zero.

Gaussian Conditionals: Suppose we have random vectors a and b, where [a,b]T follows a
multivariate Gaussian distribution. Then the conditional probability p(a|b) is also Gaus-
sian.
© Yes © No

(d) (5 points) Now, suppose Dr. Ference wants to instead use a q that satisfies the mean-field
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assumption - that is, a function that can be factored as q(z1, z2) = q(z1)q(z2). Under this
assumption, are there always parameters for q(z1, z2) that make the bound given by the
ELBO tight? Justify your answer by either describing a distribution q(z1, z2) = q(z1)q(z2)

where the ELBO is tight, or by arguing that the lower bound cannot actually be attained.
© Yes © No
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PCA as an autoencoder

5. (6 points) An autoencoder learns to compress data from the input features into a low-dimensional
representation, and then decompress that representation into an approximation that closely
matches the original features. Consider a regularized linear autoencoder with the following
objective:

L(U,V) =
N∑
i=1

1
2
‖xi −UVxi‖2 + λ1‖U‖2

F + λ2‖V‖2
F,

where xi is the feature vector of the ith example and U,V are the weights to be learned from
the data. What are the values of λ1, λ2 that recover PCA? Write down your answers and ex-
planations in the box.
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T/F Questions 

6. (4 points) Each sub-part in this question is a True-False requiring explanation, and is worth 2
points, 1 for a correct T /F, and 1 for a correct explanation.

(a) (2 points) It is possible to find the maximum a posteriori (MAP) sequence under a given
recurrent neural network language model with a linear-time algorithm in terms of se­
quence length n. If true, describe an algorithm. If false, give intuition for why (i.e., a
formal proof is not needed).

(b) (2 points) Alice is training a model with parameters 0 to minimize a loss l(x, -y; 0) ac­
cording to distribution (x, -y) ~ q. However, she discovers her training data's distribution
is corrupted, with sample points x being drawn from a new marginal distribution, p(x)
(though the conditional p(-ylx) remains unchanged (e.g., p(-ylx) = q(-ylx). Alice claims she
can still learn a true-distribution optimal learner by minimizing ( over the corrupted train
set) a re-weighted loss:

, q(x) 
l (x,-y;0) = p(x/(x,-y;0).

Is Alice correct? Why or why not? 

-
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Early Stopping, Gradient Descent, and Implicit Regularization 

7. (15 points) In this problem, we will show that early stopping, a commonly used procedure
in which optimization over the train set is truncated early, induces an implicit regularization
effect by mitigating the effect that small singular values of the dataset have on the solution. We
will develop this notion through several smaller sub-parts. First, we will work through a new
way of looking at the solution to OLS regression, viewed as the result of recursive updates
via gradient descent. Next, we will use this formulation to examine how an early-stopped
solution exhibits regularization behavior.

(a) (3 points) Suppose, we want to perform OLS on a centered, full-rank dataset XE Rnxd,
with n d-dimensional input samples, n > d, and y E Rn, n 1-D outputs:

. 1 
w* = argrmn-llY-Xwll2

.

wERd � 
L(w) 

Suppose we solve this with gradient descent; initializing our weight vector to some value 
w0 = 0, then updating in order to minimize the loss L( w) according to a learning rate y. 
Show that the update rule describing Wt+l (the value of our weight vector in the t + 1 
iteration) in terms of Wt is given by: 

-
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(b) (4 points) Recall we’ve initialized w0 = 0. Show by induction that we can write the t-th
iteration weight vector wt as

wt =
2γ
n

t−1∑
j=0

(
I −

2γ
n
XTX

)j
XTy.
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(c) (2 points) For γ > 0 such that ‖γ 2
nX

TX‖ < 1, show that

w∗ = lim
t→∞wt =

(
XTX

)−1
XTy.

Recall that forA such that ‖A‖ < 1,
∑∞
i=0A

i = (I −A)−1.

(d) (4 points) Let us decompose our data matrix X according to singular value decomposi-
tion: X = UΣV T , such that U ∈ Rn×n,V ∈ Rd×d are orthogonal (e.g., UUT = I)
matrices, and Σ ∈ Rn×d is a rectangular diagonal matrix with strictly positive entries
(generally, you can only assume its entries are non-negative, but recall we’ve assumedX
is full-rank here, so we can assume they are strictly positive). Show that we can express
the OLS solution w∗ =

(
XTX

)−1
XTy as

w∗ =

d∑
j=1

(
1
σj

)(
uTj y

)
vj,

where uj,vk indicates the j-th, k-th column of U ,V , respectively.
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(e) (2 points) Applying a similar derivation towt in (b), we can also representwt using SVD
of the data matrix. We skip the derivation and directly give the result, which is compared
with w of original OLS in (d)

A. Original OLS: w =

d∑
j=1

1
σj

(
uTj y

)
vj,

B. Early-stopped OLS: wt =

d∑
j=1

1 − (1 − 2γ
n σ

2
j)
t

σj
(uTj y)vj.

Recall that we typically associate small singular values (and their associated vectors) with
noise in the data, rather than signal.
Which of the two weight vectors, A or B, is more likely to provide a solution less depen-
dent on data noise? Explain your answer.
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8. (6 points) Consider a covariate shift domain adaptation problem. We have a large number of
labeled source domain examples, effectively having access to PS(x, y) = PS(x)PS(y|x). We also
have a large number of unlabeled examples from the target domain, thus effectively PT (x).
You can assume that the support of the target distribution is contained within the support of
the source distribution. A friend of ours was kind enough to train a Bayes optimal domain
classifier for us. But, unfortunately, in training the classifier, they used twice as many target
examples as source examples.

(a) (2 points) Write down an expression for the friend’s domain classifier Q(d|x), d = S, T .

(b) (4 points) You are given a loss function Loss(y,h(x)), where h(x) is a classifier we wish
to estimate. Provide an expression for the target risk of h only as a function of the source
distribution and the friend’s domain classifier.

Covariate Shift

Page 16





Name:

10. (12 points) Let’s look at a basic VAE model, abstractly, and figure out some properties of the
associated ELBO criterion. To this end, let the generative model be P0(z)P(x|z), where P0(z)

remains fixed. Our posterior approximation isQ(z|x) (typically parametric) which we have to
set conditioned on each observed x. We also assume the data distribution Pd(x) from which
the training data is sampled from. You can think of this as assuming that we have a very large
training set, effectively the same as using the distribution Pd(x) directly. The ELBO criterion
in this case is

ELBO(Q;P) = Ex∈Pd(·)
[
Ez∼Q(·|x) logP(x|z) + KL(Q(·|x)‖P0(·))

]
(a) (2 points) Suppose we place no constraints on the form that the posterior distribution

Q(z|x) takes and find Q∗ = arg maxQ ELBO(Q;P). Provide an expression for Q∗(z|x).

(b) (3 points) Briefly explain why the solutionQ∗(z|x) does not simply concentrate around a
single point z∗ = arg maxz logP(x|z) for each x?

(c) (3 points) Suppose we have set Q(z|x), not necessarily optimally, and find
P∗ = arg maxPx|z

ELBO(Q;P). Provide an expression for the resulting P∗(x|z).

(d) (4 points) Assume now that P(x|z) = N(x;µz, 1), z = 0, 1, and x ∈ R (scalar). P0(z) = 0.5
for z = 0, 1. In other words, we are estimating a simple equally weighted mixture of two
Gaussians with unit variances. Describe what family of restricted posterior approxima-
tions should we use so that the ELBO estimation criterion would reduce to finding means
µz, z = 0, 1, as in k = 2 means clustering?

VAE
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Let us Do Regression 

11. (34 points) For the purpose of this question, we will consider data being generated as per a
mixture model. Specifically, let X E JR. denote the random variable representing the features and Y
E JR. denote the target or label that we would like to predict using the features.
We assume that random variable X is generated as per mixture of m-Gaussian distributions with
ith mixture component being Gaussian with mean µ;_ E JR. and variance CT � 0, and �e probability
of ith mixture being 'Pi with 1 � i � m. To put it another way, to generate a sample of random
variable X:

• we sample random variable 7t which has multinomial distribution on {l, ... , m} such
that!P(n=i) =Pi, for 1 � i � m

• if the outcome of the multinomial is i, that is 7t = i, then we generate a sample from a
Gaussian distribution with mean µ;_ and variance CT i

Given X, we generate Y as follows: if 7t = i, then Y = wiX + e, where wi E JR. is a fixed 
parameter associated with mixture component i and € is independent Gaussian with mean 0 
and variance 1. 

(a) Let us make sure that we understand the setup by answering few simple questions.
1. W hat is the probability density function of X? Note: the probability density function

of a Gaussian distribution with meanµ and variance cr2 is p(x) = ✓ 
1 

2 exp(- (x2-�)
2 

). 
2rr<Y <Y 

2. Suppose you observe that X = x, what is the likelihood that it came from mixture
component i? That is, compute IP(7t = ilX = x).

(b) Next, let us suppose that you know that data is generated as per the above described
distribution. Let f* : JR. -+ JR. be such that it minimizes IE[(Y -f(X) )2] over all choices of
function f : JR. -+ JR.. Please provide an explicit form off* using your knowledge of the
joint distribution of X, Y.
Note: if you didn't work out JP(n = ilX = x) in (a).2, you can use the notation IP(7t = ilX =
x) in your solution for (b) instead of its explicit form.

-
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(c) Now, suppose we do not have the knowledge of the joint distribution of X, Y. But we
observe N data points, (xn,yn) for 1 6 n 6 N. Using these observations, we would like
to identify f∗. As a start, we would like to understand whether simple linear regression
would be a good idea or not. That is, we want to find a function f(x) = a∗Nx+ b

∗
N so that

(a∗N,b∗N) are solutions to

minimize
N∑
n=1

(yn − axn − b)2 over a,b ∈ R.

Identify limiting quantities, a∗∞ = limN→∞ a∗N as well as b∗∞ = limN→∞ b∗N. You may
write your results using statistical quantities of X and Y (e.g. expectation, variance, etc).

(d) Given that we understand a∗∞ and b∗∞, let us examine the performance of linear regression
(assuming N = ∞). To that end, let us consider a concrete scenario where m = 2, p1 =

p2 = 1/2, w1 = 1, w2 = −1, µ1 = θ, µ2 = −θ for some θ > 0 and σ1 = σ2 = 1.
What are the values of a∗∞ and b∗∞ for this specific setting? Will the linear estimator
trained with infinitely many observations yield good predictions for this setting (yes/no)?
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"Dropout" Linear Regression 

12. (22 points) Dropout is a technique developed to regularize neural networks by randomly set­ting the output of some nodes to O during training. In this part, we aim to explore its effect in 
the case of ordinary linear regression. Consider a dataset of n training examples, {(xi, 1Ji)}�1,where Yi E JR is the target value and xi E JR'P is the -p-dimensional input feature vector. We
use the notation Xi ,k to represent the kth entry of Xi.
In general, one could view linear regression as a 1-layer (i.e. no hidden layer) linear network.

= L wjxiJ+ wo
j=l 

Recall that the objective of ordinary linear regression is to minimize the squared loss, i.e. solve
arg� l(w) , where the loss function l(w) is

1 n V 
2 l(w) = � L ( Yi -wo -L WjXi,j)i=l j=l (1) 

With this 1-layer linear network setup, it is now easy to apply the general" dropout" principle:
for each input node corresponding to the input feature, Xi ,k, we set the value to O with prob­
ability q (independent of the other nodes). With probability 1 - q, we scale it by s. Formally,
instead of using x i ,k at the corresponding node in the input layer, we use 'Xi,kl i ,k, where each
random variable Ii,k is IID, and

Ii k = { O , s 
with probability q 
with probability 1 -q

(a) (4 points) On average, we want the" dropout" input Xi,kli,k to be the same as Xi,k· What
should the scale constants be in order to make sure IE[Xi,kli ,kl = xi,k?

(b) (4 points) Based on the problem description and the loss defined in Equation (1), write
down the new dropout squared loss l O (w) in terms of the dataset {(xi, yd}�1, weights
w, and the random variables {Ii,kh�i�n,l�k�p·

-
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(c) (4 points) Recall that for ridge regression, one minimizes the regularized squared loss:

LR(w) =
1
n

n∑
i=1

(
yi −w0 −

p∑
j=1

wjxi,j

)2
+ λ

p∑
j=1

w2
j

Calculate the gradient for the regularized squared loss, LR(w) with respect to a particular
parameter wk (k 6= 0). That is, compute ∂L

R(w)
∂wk

.

(d) (10 points) We now investigate the relationship between this dropout formulation and
ridge regression. To this end, we provide the following background information.
Background (stochastic optimization): suppose we want to minimize f(w), where f is a
strictly convex function. Let w∗ be the optimal solution.

• The usual gradient descent algorithms suggest that at each time step t,

wt+1 = wt − αt
∂f(wt)

∂w
.

With a proper step size αt, we have wt → w∗ as t→∞.
• Consider the following generalized gradient descent algorithm.

wt+1 = wt − αtg(wt).

Suppose that g(w) is a (possibly randomized) function such that E[g(w)] = ∂f(w)
∂w

for any w (i.e., the expected value of g(w) equals the gradient of f(w)). Then, with
proper step size αt, wt also converges to w∗ as t→∞.

For the purposes of this problem, assume that for each 1 6 j 6 p, 1
n

∑n
i=1 x

2
i,j = 1 (i.e. our

features are standardized).
Using the information given above, as well as your answers in (a)-(c), argue that running
gradient descent on the dropout squared loss LD(w) converges to w∗, where w∗ is the
solution to ridge regression with a particular λ. In addition, identify the value λ in terms
of q and the dataset {(xi,yi)}ni=1.
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Convolutional Neural Networks 

13. (13 points)ln this question, we'll first consider the convolutional neural network (CNN) architecture
below. The input layer has six neurons. It is followed by a one-dimensional convolutional
layer that has one filter with a window size of 3, a stride length of 1, and is padded by a

single zero on each side. This is followed by a fully connected layer, and a single output unit

Input layer ( 6 units) 

Two example filter windows are shown 

1-D conv layer ( 6 units)

Fully com1ected layer (3 units) 

Output layer (1 units) 

(a) (3 points) How many parameters are there in the convolutional layer?

We will now try and express a convolutional layer as a special case of a fully-connected layer. 
We express the weights in a fully connected layer as a weight matrix W where z = Wx. Here, 
xis the input and z is the output (before activation), both expressed as column vectors. 

(b) (5 points) Suppose the convolutional filter weights are [w1, w2, w3]. Write the correspond­

ing fully-connected weight matrix in terms of w1, w2, and w3. Hint: many of the elements
in the matrix will be repeated.

(c) (5 points) If the convolutional layer used a stride length of 2 (with the starting window

centered on the first unit of the input), what would the weight matrix be instead? Hint:
the convolutional layer now has only three units.

-
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Neural Network Approximation and Representation 

14. (a) (6 points) A piece- wise constant function h(x): IR. --t JR. is plotted in Figure 1, formally
written as 

-2, if x � -2

h(x) =
1, if - 2<x�-1 

-2, if-l<x�l

3, ifl<x 

We know h(x) can be approximated by a one-hidden- layer neural network arbitrarily 
well. Now you will approximate h(x) by hand with a neural network in Figure 2 below, 
with one input neuron , one hidden layer and one output neuron. The hidden neurons use 
sigmoid activation. The activation of the output is simply linear. Find a possible solution 
to the biases bl through b4, and weights Wl through W3. 

> 

4 

3 

2 

- I 

-3 2 2 3 

-1 

. 

-3 

Figure 1: plot of y = h(x) 

4 

b1= 

1000 W1= 

b4= 
W2= 

W3= 

b3= 

Figure 2: Neural Network to approx­
imate y = h(x). The numbers 1000, 
-1000, 1000 on the edges are the cor­
responding weights. They are made
large intentionally.

Write your solution (values for bl through b4, and Wl through W3) here: 

-
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Now we'll investigate how a simple recurrent neural network (RNN) can represent two dif­
ferent linear models. We use the RNN architecture below to classify an input text according 
to its sentiment (positive or negative). Suppose all possible words are listed in a vocabulary 
called V. Let the number of words in the input text (including repeats) be T. 

We break the input text apart into a sequence of words, and we represent the kth word as a 
column vector Xk of length IVI. The ith element of Xk is a 1 if the word is the ith word in the 
vocabulary. All other elements are zero. The RNN maintains a hidden state s, which is also a 
column vector. 

After setting the initial state s0 to be some value, we pass in xi, then x2, and so on, updating 
the hidden state. The binary output y is a function of the hidden state after all T words have 
been passed as input. These equations and a simplified diagram of the RNN is given below. 

B 

A 

B 

St= ReLU(Ast-1 + Bx.i) 

y =sign(cTsT+d)

A 

where A E Rl•I x l•I, B E Rl•I xlVI, c E Rl•I, d E IR, and sign( a) - g: 

y 

C 

B 

if a� 0 

otherwise 

(b) (6 points) It is possible to represent the entire sentence at once, using a single bag of
words column vector z. Here, z has length IVI and the ith element of z is a count of how 
many times the ith word of the vocabulary appears in the input text. A simple model to 
classify text sentiment is a linear model on this z, i.e. 

y = sign(aT z) 

where a is some column vector in ]RIVI. 

Suppose we want the output of the RNN we described earlier to match the output of this 
linear model. Describe a way of setting the RNN weights (A, B, and c), bias d, and initial 
state so in terms of a to do this. 
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(c) (6 points) Suppose we instead define the bag of words vector z using indicators. That is,
the ith element of z is a 1 if the ith word appears anywhere in the input text and is a 0
otherwise.
Suppose we want the output of the RNN we described earlier to match the output of the
linear model on this newly defined z. Describe a way of setting the RNN weights (A, B,
and c), bias d, and initial state s0 in terms of α to do this.
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Time-Varying Bayesian Regression 

15. (20 points) Consider a data set {(xt, '!::Jt)}i=l = {(xi, 111), ... , (xT, '!:IT)}, consisting of scalar fea­
ttires x1, x2, ... , XT and scalar observations 111, '!::12, ... , 1JT · You can think of Xt and '!:It as repre­
senting the feature and observation at timestep t. There is only one feature and observation at
each timestep t. The goal is to find a model that fits this data. Based on prior knowledge
about the problem, you decide to use the following time-varying Bayesian model:

• The initial parameter w0 is distributed as a standard Gaussian. Each other parameter Wt
is distributed as Wt-1 plus independent noise from a standard Gaussian, fort= 1, ... , T.
(That is, the initial parameter value gets noisier with time.)

• The observation 1Jt is distributed as WtXt plus independent noise from a standard Gaus­
sian, fort= 1, ... T.

Formally: 

Wt = Wt-1 + TJt, 

wo ~ N(0, 1) 

Tit~ N(0, 1), 

€t~N(0,l), 

t = 1, ... , T 

t = 1, ... , T 

where wo, {TJt}, and {et} are independent. (Note that, if you had TJt = 0 for all t = 1, ... , T, then 
you would be back to the usual Bayesian regression setting.) 

You want to estimate the vector of parameters w := [wo, w1, ... , WT ]T as the expected value of 
w according to the posterior distribution p(wl{(xt, '!::lt)}i=1). In this setting, the posterior dis­
tribution turns out to be a multivariate Gaussian, so its expected value is equal to the vector 
of parameters that maximizes the probability density function; i.e. the mode of the poste­
rior distribution. Therefore, to estimate w, it suffices to compute the mode of the posterior 
distribution. This question focuses on computing this mode. 

(a) (4 points) Calculate the prior distribution of the parameters, p(wo, w1, ... , WT). Feel free to
ignore proportionality constants in your answer.

(b) (4 points) Calculate the set of parameters wo, w1, ... , WT that maximizes p(wo, w1, ... , WT);
i.e. the mode of the prior.

-
Page 29 



Name:

(c) (6 points) Calculate the posterior distribution of the parameters p(w0,w1, ...,wT |{(xt,yt)}Tt=1).
Feel free to ignore proportionality constants in your answer.
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(d) (6 points) Assume xt > 0 for all t. Show how to calculate the set of parametersw0,w1, ...,wT
that maximizes p(w0,w1, ...,wT |{(xt,yt)}Tt=1); i.e. the mode of the posterior. You may as-
sume you have access to a linear system solver to solve for v in Av = b, for an invertible
matrix A and a vector b. If your answer invokes this solver, clearly state what A and b
are and why A is invertible.
Hint: If a matrixA is symmetric and for each row i,Aii >

∑
j6=i |Aij|, thenA is invertible.
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Classification (Yes-no Questions) 

16. (6 points) For each question in this section, please select the correct answer and provide a
short explanation in the box.

(a) (2 points) Recall that a risk function is defined as the expected loss of the classifier h E JC

with respect to the data distribution IP over X x 1}, that is,

L(h) := JE[!(h, X, Y)] 

{
1, if h(X)-=/= Y 

For the 0/1 loss, defined as io;1 =
0, if h(X) = Y 

0 Yes O No 

, the risk is: L(h) = IP'(h(X) -=/= Y). 

(b) (2 points) With enough training data, the training error of a nearest neighbor classifier
always goes down to zero.
0 Yes O No

(c) (2 points) In general, for small training sets, we are likely to reduce the bias of the classifier
by adding a regularization penalty to the loss function.
0 Yes O No

-
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Classification (Multiple Choice) 

17. (3 points) For each question in this section, please select the correct answer and provide a
one-sentence explanation in the box.

Loss functions 

(a) (3 points, Check all that apply.) Suppose we are building a linear classification model
h(x) = w T x on linearly separable data, minimizing which of the loss functions below
will force lwl--+ oo?
0 Logistic Loss: L(-y, h(x)) = log(l + exp(--yh(x)))

0 Hinge Loss: L(-y, h(x)) = max{O, 1 - -yh(x)}

{ 
0 , if -y = h( x) 

0 0 -1 Loss L(-y, h(x)) =
1 , if -y # h( x) 

0 Exponential loss: L(-y, h(x)) = exp(--yh(x)) 
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Bayes Classifier 

18. (7 points) Suppose for a given data-set with features X and labels Y, we know the true under­
lying distribution is: P(XIY = 0) = N(µo, a2), P(XIY = 1) = N(µ1, a2) and P(Y = 1) = P(Y = 0),
what is the Bayes classifier for this data-set?
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Convolutional Neural Networks 

19. (15 points) Given a sequence of 6 bits (0 or 1), Bob is trying to create a 1D convolutional
network to recognize if the string "101" occurs in this sequence. Bob thinks this task is easy

and so he just sets weights for his network instead of learning them. He chooses to use a 1D

convolution with weights w1 = 1, w2 = 0, w3 = 1, a bias term of b = -1.5, a simple step

function activation, stride 1, and no padding. For clarity consider the figure below:

[Y]o[y]1iol1I 
' 

' 

: W1 W2 W3 

I 1 I O I 1 I 
b 

-1.5

Figure 2: An example of the convolutional layer applied to part of the input 

Note that step(0) = 0. 

(a) (2 points) What will be the output size of this first convolutional layer?

-
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To reduce the output size of the convolutional layer to a 0-1 classification output, Bob
decides to use a global average pooling layer (which simply averages all of the outputs
from the previous layer), with another step function based activation after the layer.

(b) (5 points) Find a possible input sequence that would make the network output 1 but does
not have “101” as a substring.

(c) (5 points) Modify one of the weights (or the bias) of the convolution filter so that it works
as desired (and no longer fails on the input sequence found in part b).

(d) (3 points) Bob decides that he wants his network to be able to take into account sequences
with variable finite lengths (e.g. a 20-bit sequence). Does Bob need to make any changes
to his network architecture (which ran on 6-bit inputs)? Write a one sentence explanation
as to what the change would be (if needed) or why a change is not needed.
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Regression 

20. (20 points) Consider the following datasets consisting of 100 samples indexed by k = 1, .. , 100.

• Feature vector x(k) = [1, k-2, (k-1)2]T, 

• Labely(kl = (k+3)2 

You are to perform a ridgeless (unregularized) linear regression, that is find the best fit 

-g = �1x1 + �2x2 + �3X3. 

(Note that we are not adding an intercept �o because its role is played by �i-) 

(a) (10 points) Compute the regression coefficients (ERM solution).

(b) (5 points) Show your prediction on a new input x ( new l = [O, 0, O].

(c) (5 points) Suppose that you observe y(new) = 0. Compute updated regression coeffi­
cients (new ERM solution).
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Bayes Classifier 

21. (10 points) Our friend calculated posteriors Q(ylx) for a slightly different dataset than ours
where the prior class probabilities Q(y) were different. In other words, our friend's data was

generated by Q(x, y) = P(xly)Q(y) while ours came from P(x, y) = P(xly)P(y) (note that
P(xly) is the same for both). Given our friend's Q(ylx), their incorrect class priors Q(y), and

the true class priors P(y) for our data, how do we get the Bayes classifier for our data?

-
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Logistic regression 

22. (11 points) We are interested in regularizing the terms separately in logistic regression.
(a) (2 points) Consider the data in the figure below where we fit the model

Suppose we fit the model by maximum likelihood, that is, we minimize 
n 

J(w) = L -logP('llx\w) 
i=l 

Sketch a possible decision boundary corresponding tow*, marking the boundary as "(a)" 

(b) (2 points) Is your decision boundary unique?

(c) (5 points) Now suppose we regularize only the wo parameter; that is, we minimize
n 

J(w) = [ L. -log P(-y ilx\ w)] + ;\w5 
i=l 

with ;\ approaching oo. Sketch a possible decision boundary corresponding to (the regu­
larized) w*, marking this boundary as "(c)" 
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(d) (2 points) How many classification errors does it make on the training set?
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