
6.7900: Exam 1, Fall 2024

Solutions
These are not the only acceptable answers. Some other answers also received credit.

Answer the questions in the spaces provided. Show your work neatly. Try your
best to put your answers in the boxes provided. If you absolutely have to write
an answer elsewhere, mark very clearly where to find it.

If a question seems vague or under-specified to you, make an assumption, write it
down, and solve the problem given your assumption.

You may prepare and use both sides of one 8.5 inch x 11 inch sheet of paper upon
which you may write/print anything you like. You may not use any electronic
device or any other resource other than your two-sided sheet of paper.

Write your name on every page.

Try not to ask questions! But, if you feel you must, come up to the front.

Name: MIT Email:

Question Points Score

1 24

2 10

3 25

4 21

5 20

Total: 100
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1 Logistic Regression Progression

1. You have a training dataset D with each input x(i) consisting of d binary features x
(i)
1 , . . . , x(i)d ,

where all x(i)j ∈ {0, 1} and a binary label y(i) ∈ {0, 1}. You have been having trouble finding a good
model, and you are getting low likelihood on the training set. Notation:

• [a,b, . . . , z] concatenation

• p̂(i): prediction for example i.

• σ(z) = 1/(1 + e−z), the sigmoid function

• σ2(z) = 1/(1 + 2−z), the base-2 sigmoid function

• Plots of σ(z) and σ2(z) (for reference)

(a) (6 points) Let’s start by writing an expression for the training data likelihood, in terms of
the training data and parameters θ ∈ Rd:

Solution:

p(D) =

n∏
i=1

σ(θTx(i))
y(i)

· (1 − σ(θTx(i)))(1−y(i))
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Now, here are some ideas for improving the training-set likelihood. Let’s assume that we are
always finding the optimum of the likelihood given the features we are using. For each of
them, specify whether: 1) it generally increases training-set likelihood; 2) it will not make a
difference; or 3) it generally decreases training-set likelihood. Explain each answer in one or
two sentences or formulas.

(b) (3 points) For each data-point, augment the dimensions by adding the complement of each
feature before trying to fit the dataset; i.e. [x(i)1 , . . . , x(i)d ] → [x

(i)
1 , . . . , x(i)d , 1 − x

(i)
1 , . . . , 1 −

x
(i)
d ]

training-set likelihood generally: ⃝ increases
√

doesn’t change ⃝ decreases

Solution: Any solution to this new logistic regression can be parametrized as ŷi =

σ
(∑f

j=1 αjx
i
j +

∑f
j=1 βj(1 − xij) + γ

)
, then using the distributive property:

ŷi = σ

 f∑
j=1

αjx
i
j +

f∑
j=1

βj(−xij) +

f∑
j=1

βj · 1 + γ



ŷi = σ

 f∑
j=1

(αj − βj)x
i
j +

 f∑
j=1

βj + γ


which has the form of the original logistic regression.
It was enough to say that because the new features are a linear function of the original
ones, they do not add expressive power.
Note: Full credit was also given for good reasoning that this feature transformation
effectively adds a bias term if it didn’t previously exist in the model, generally in-
creasing likelihood.

(c) (3 points) Use two sigmoids instead of one; i.e., instead of parametrizing the solution as
p̂(i) = σ(

∑
θjx

(i)
j ), parametrize it as: p̂(i) = σ(σ(

∑
θjx

(i)
j )).

training set likelihood generally: ⃝ increases ⃝ doesn’t change
√

decreases

Solution: The output of σ(z) is between 0 and 1 for all z. Therefore the output of
σ(σ(z)) is between σ(0) = 0.5 and σ(1) ≈ 0.73, which severely limits its range and in
particular cannot predict yi = False.
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(d) (3 points) Fit a regular logistic regression using the base e sigmoid, σ, and a second lo-
gistic regression using a base-2 sigmoid, σ2, function and return the most confident result
(the probability estimate that is farthest from 0.5).
training set likelihood generally: ⃝ increases

√
doesn’t change ⃝ decreases

Solution: Assuming that we denote the model logits
∑f

j=1 αjx
i
j + γ, we can derive

the solution using σ2 and σ:

σ2(

f∑
j=1

αjx
i
j + γ) =

1

1 + 2−(
∑

αjx
i
j+γ)

=
1

1 + e− ln 2(
∑

xi
j+γ)

= σ(

f∑
j=1

αjx
i
j ln 2 + γ ln 2)

The factor ln 2 can be incorporated into the learned weights. Therefore, σ2 logistic
regression and σ logistic regression are equally expressive and training them will
yield equal predictions for all datapoints. Therefore ensembling them in the proposed
manner will not change results.

(e) (3 points) Before fitting the dataset, for every data-point i, make an independent coin flip
and append the result of that flip as a feature; i.e., [x(i)1 , . . . , x(i)d ] → [x

(i)
1 , . . . , x(i)d , coin(i)].

training set likelihood generally
√

increases ⃝ doesn’t change ⃝ decreases

Solution: First, it is clear that this function class is at least as expressive because we
can always set the coefficient multiplying coin(i) to 0. Then, with high probability,
the random feature will have non-0 correlation with the labels and will thus contain
some information about them that can be exploited to reduce underfitting. More

concretely, for n datapoints the probability of this happening is
( n
n/2)
2n → 0 and 0 for

n odd, this level of detail was not needed for a satisfactory answer.) Another way of
seeing it is that coin(i) is a function that is not a linear combination of the current
feature set and will thus increase the capacity of our classifier.
Note that this would be a bad idea because it would lead to poor generalization, but
it would still help with underfitting.
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(f) (3 points) Fit a regular logistic regression and obtain a prediction p̂(i) for each element
x(i). Append p̂(i) as a feature ([x(i)1 , . . . , x(i)d , p̂(i)]) and fit another logistic regression to
the new dataset.
training set likelihood generally:

√
increases ⃝ doesn’t change ⃝ decreases

Solution: ŷi is a non-linear function combination of the features and therefore in-
creases the capacity of the logistic regresssion. Moreover, ŷi contains information on
the labels through the parameters trained during the first logistic regression, which
makes it a very informative feature.

(g) (3 points) For each pair of features add their product as another feature before trying to
fit the dataset; i.e. [x(i)1 , . . . , x(i)d ] → [x

(i)
1 , . . . , x(i)d , x(i)1 x

(i)
2 , x(i)1 x

(i)
3 , . . . , x(i)d−1x

(i)
d ].

training set likelihood generally:
√

increases ⃝ doesn’t change ⃝ decreases

Solution: We can express anything that we could express before by setting all co-
efficients for second-order terms to 0, but we now introduce nonlinear interaction
features that could better fit the training data.
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2 Ridges

2. Recall the ridge regression objective

J(θ) =

n∑
i=1

(θTx(i) − y(i))2 + λ∥θ∥2 .

We saw in the homework that ridge regression can be understood as a maximum a posteriori
probability (MAP) estimator in the case where the prior on θ is a Gaussian with mean vector
0 and covariance matrix αI for some scalar value α.

Recall that the posterior probability distribution on θ given data D, p(θ | D), is proportional
to p(D | θ)p(θ).

(a) (6 points) How would we rewrite the ridge regression objective if our prior had a mean
vector w instead of 0?

Solution:

J(θ) =

n∑
i=1

(θTx(i) − y(i))2 + λ∥θ−w∥2 .

(b) (4 points) Suppose we were to increase α. What change, if any, would we need to make
to our objective, so that its minimizer is the MAP of the resulting distribution? Choose all
that apply and give an informal explanation.√

Decrease λ ⃝ Increase λ ⃝ Decrease ∥w∥ ⃝ Increase ∥w∥

Solution: Recall from HW2 Q5 that λ is inversely proportional to α, so increasing α

would decrease the regularization constant. Intuitively, if we are less certain about
our prior of the weights, we should penalize less for deviating from the prior.
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3 Discrete Bayesian Logistic Regression

3. We are performing logistic regression, in the sense that we are interested in fitting a probability
distribution P(y | x) of the form

p(y = 1 | x, θ) = σ(θTx) ,

where y ∈ {0, 1} and x ∈ Rd is an input vector, to a data set of iid (x,y) pairs.

Often, in logistic regression, we have no prior on θ, and we simply try to a maximum-likelihood
estimate for θ. In this problem, by contrast, d = 2 and for some reason we are sure that there
are only 4 possible values for θ: θ1 = (1, 1), θ2 = (1,−1), θ3 = (−1, 1), θ4 = (−1,−1). We start
with some discrete prior distribution over θ, p(θ) = (p1,p2,p3,p4).

(a) (6 points) Write a formula for the prior marginal probability p(y = 1 | x) in this model, just
in terms of σ, the θi and prior pi values for i ∈ {1, . . . , 4}, and x.

Solution:

p(y = 1|x) =
4∑

i=1

p(y = 1|x, θ = θi)p(θ = θi)

=

4∑
i=1

piσ(θ
T
i x)

(b) (6 points) Write a general formula for the posterior on parameter values after obtaining
one observation (x,y). You can ignore any constants of proportionality and just specify
p(θ = θi | (x,y)) ∝

Solution: P(θ = θk | (x,y)) ∝ P(y|x, θk)P(θ = θk).
So we can write

P(θ = θk | (x,y)) ∝ σ(θTkx)
y(1 − σ(θTkx))

1−yp(θ = θk)

(c) (6 points) Now, assume our prior on these hypotheses is uniform, and imagine you get
an input of (0, 1) and it is labeled positive. After you perform a Bayesian update based
on this observation, for each of the hypotheses, what happens:

i. θ1 = (1, 1) becomes
√

more likely ⃝ less likely ⃝ unchanged
ii. θ2 = (1,−1) becomes ⃝ more likely

√
less likely ⃝ unchanged

iii. θ3 = (−1, 1) becomes
√

more likely ⃝ less likely ⃝ unchanged
iv. θ4 = (−1,−1) becomes ⃝ more likely

√
less likely ⃝ unchanged

(d) (5 points) Each of the plots (A)–(E) shows, for each point x = (x1, x2), a value p(y = 1 | x),
where more likely areas are brighter. For example, the upper right corner is more likely
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in the plot of p(y = 1 | x, θ = (1, 1)) below

(A) (B) (C)

(D) (E)

Page 8



Name:

Match each of these prior or posterior predictive distributions, given data D, to the ap-
propriate figure (again assuming the prior on parameters is uniform).

i. p(y | x,D = {((1, 0), 0)})
⃝ A ⃝ B ⃝ C

√
D ⃝ E

ii. p(y | x,D = { })√
A ⃝ B ⃝ C ⃝ D ⃝ E

iii. p(y | x,D = {((1, 0.5), 1)})
⃝ A ⃝ B

√
C ⃝ D ⃝ E

iv. p(y | x,D = {((1, 0), 1), ((0, 1), 1)})
⃝ A

√
B ⃝ C ⃝ D ⃝ E

v. p(y | x,D = {((0, 1), 1)})
⃝ A ⃝ B ⃝ C ⃝ D

√
E

(e) (2 points) Briefly explain your answers.

Solution: Explanation:
(i). d is the only option symmetric around x2 = 0 and higher for x1 negative
(ii). a is the only option where all four corners have the same probability
(iii). The upper right corner has the most probability in both b and c. but in c, we
don’t have symmetry around x1 = x2

(iv). see answer for iii. here we do expect symmetry around x1 = x2

(v). e is the only option symmetric around x1 = 0 and higher for x2 positive
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4 Fighting last week’s fire

4. In this question, we will revisit the problem posed in mini-project 1. Recall that we have data
that associates several features of the context in which the fire is occurring (x) with its eventual
total burned area (assuming no intervention), y. Our goal was to predict the best fire-fighting
response, to minimize an overall economic cost, including the cost of the response and the
cost of the burned acreage. We defined risk(y, r) to be the expected economic cost of sending
response r to a fire with (untreated) burn acreage y.

We discussed three different framings of the problem:

1. Basic regression: try to find parameters θ of a regression model that predicts y = hθ(x)

with low squared loss. Let f∗ be the linear regression model that minimizes true expected
squared error.

2. Response classification: assign each training input x(i) to a discrete response in some
finite set R, where r(i) = argminr∈Rrisk(y(i), r), and try to find parameters θ of a multi-
class classifier to predict r, minimizing cross-entropy loss or 0-1 loss with respect to these
assigned classes. Let c∗ be the classifier that minimizes true expected 0-1 loss.

3. Cost-based classification: try to find parameters θ of a classification model that predicts
a response r ∈ R (where R is a discrete set of responses) that minimizes LE(x, r), which is
the expected cost of sending response r to a fire with properties x. Let r∗ be the classifier
that minimizes the true value of this cost-based loss.

(a) (5 points) Give a definition for r∗ in terms of risk(y, r) and the true p(y | x).

Solution:
r∗(x) = argminr

∫
y

p(y | x)risk(y, r)dy
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(b) (3 points) Jan thinks that r∗(x) and argminr∈Rrisk(f∗(x), r) are not equal. For some par-
ticular x, let p(y | x) = unif (0, 2) and f∗(x) = 1. Assume there are only two possible
responses, and that risk(y, r1) = 1. Describe, in math or words, a function risk(y, r2) for
which r∗(x) is not equal to argminrrisk(f∗(x), r) and where r1 is a better response.

Solution: First of all, this question should have just said that we should construct a
risk function such that:

risk(f∗(x), r1) > risk(f∗(x), r2)

r∗(x) = r1

So that picking according to the best regression result would pick r1 but picking ac-
cording to the integrated risk would pick r2.
This will happen when the risk for r2 is is less than 1 (which is the risk for r1) at y = 1,
but where the integrated risk is higher than 2.
Here is an example of such a function.

risk(y, r2) = y4 − .1

But really it could be anything that goes up once it’s away from y = 1.

(c) Lauri decides to apply Bayesian linear regression to the problem and finds that, for the
next fire that crops up, the posterior predictive distribution has very low variance. They
enthusiastically go and tell everybody that they are highly certain about the regression
result.

i. (2 points) Describe a situation (property of the data) that would cause Lauri’s cer-
tainty to be mis-placed, even if this new fire is drawn from the same distribution as
the previous ones?

Solution: If Lauri’s assumptions for Bayesian linear regression are correct, then
they should be right in being certain if their posterior predictive has low variance.
Things go wrong when their assumptions are broken, such as the true model not
being linear.

ii. (2 points) What additional tests on existing data could Lauri have run that would
have prevented such over-optimism?

Solution: Look at data likelihood (of training and or a validation set), or visual-
ize the data
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(d) (4 points) Here are training and evaluation plots of the residuals of four different regres-
sors, on real firefighting data (in the project we looked at synthetic data). The y values
are computed as log(1 + a) where a was the area burned in the original dataset. By far
the most common value of a was 0, and so the most common value of log(1+a) is also 0.
We are also including some evaluation results for each one.

Regressor 1: train (left plot), evaluation (right plot)

Notice that the plots have different scales

Training RMSE 1.37 Evaluation RMSE 1.54
Training MAD 1.05 Evaluation MAD 1.09
Training empirical risk 184415 Evaluation empirical risk 207163

Regressor 2: train (left plot), evaluation (right plot)

Training RMSE 0.09 Evaluation RMSE 2.18
Training MAD 0.0 Evaluation MAD 1.03
Training empirical risk 57857 Evaluation empirical risk 237487
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Regressor 3: train (left plot), evaluation (right plot)

Training RMSE 1.40 Evaluation RMSE 1.38
Training MAD 1.13 Evaluation MAD 1.13
Training empirical risk 192331 Evaluation empirical risk 214310

Regressor 4: train (left plot), evaluation (right plot)

Training RMSE 1.52 Evaluation RMSE 1.48
Training MAD 0.51 Evaluation MAD 0.51
Training empirical risk 192331 Evaluation empirical risk 214310

Match each of the four regression methods to the resulting data from above.
i. Predict the mean y value

⃝ Regressor 1 ⃝ Regressor 2
√

Regressor3 ⃝ Regressor 4
ii. Predict the median y value

⃝ Regressor 1 ⃝ Regressor 2 ⃝ Regressor3
√

Regressor 4
iii. Ordinary linear regression√

Regressor 1 ⃝ Regressor 2 ⃝ Regressor3 ⃝ Regressor 4
iv. Decision-tree regression with a large tree

⃝ Regressor 1
√

Regressor 2 ⃝ Regressor3 ⃝ Regressor 4
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(e) (2 points) Something looks suspicious here: why are the empirical risks for regressor 3
and regressor 4 the same?

Solution: They are both predicting a very small fire size, which generates a very
small response, to all cases.

(f) (3 points) Which regressor would you use to predict responses to upcoming fires? Give
a brief explanation.

√
Regressor 1 ⃝ Regressor 2 ⃝ Regressor3 ⃝ Regressor

4

Solution: It has the lowest empirical risk on the validation data.
But fine if they say they’re all terrible!
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5 Variations on a theme

5. We are observing an important scientific phenomenon, but find that our instrument is noisier
during the day than during the evening. In particular, we believe that our ith observation y(i)

is a deterministic scalar function of some feature vector x(i) plus some zero-mean Gaussian
noise, ϵi, that is independent across observations i: y(i) = f(x(i)) + ϵi. Assume that the
variance of ϵi during the day is σ2

day and the variance of ϵi at night is σ2
night, and both variances

are known. Also, the first feature (that is, the first component of the feature vector, x(i)1 ) is
strictly greater than 0 in the day time and less than or equal to 0 at night.

Given a data set D = {(x(i),y(i))}ni=1, we would like to fit a linear regression model, f(x) =

θTx. For simplicity in expressing your answer, assume datapoints 1, . . . ,m have x1 > 0 and
datapoints m+ 1, . . . ,n have x1 ⩽ 0.

(a) (7 points) Derive a formula for the maximum likelihood estimate of θ, just expressed as
an argmax. Recall the scalar Gaussian density with mean µ and σ2:

p(z) =
1√
2πσ

exp
(
−
(z− µ)2

2σ2

)

Solution: Key points: write θ in terms of argmin or argmax, and include σ in the ex-
pression. Correctly express the log likelihood (or likelihood).

logp(D|θ) = −1
2
∑n

i=1

(
log(2πσ2

i) +
((y(i)−θTx(i))2

σ2
i

)
θ̂ = argmin

θ

n∑
i=1

(y(i) − θTx(i))2

σ2
i

or

θ̂ = argmax
θ

−

n∑
i=1

(y(i) − θTx(i))2

σ2
i
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(b) (6 points) For each part, mark True/False and briefly explain your answer.
i. ⃝ True

√
False : Suppose I have two observations such that y(1) − θTx(1) =

y(2) − θTx(2), but observation 1 is taken during the day and observation 2 is taken at
night; and suppose σ2

day > σ2
night, then the likelihood of observation 1 is higher than

the likelihood of observation 2, given θ.

Solution: The correct answer is False because we are comparing likelihoods of
two different distributions at an arbitrary value, so which likelihood is bigger
actually depends on which point we compare them at.
A common misconception was "higher noise means lower likelihood since the
distribution is flatter" which is misplaced intuition that only works for values in
the vicinity of zero.

The main thing to internalize in this solution is that normal distributions with higher
variance have relatively lower likelihood near zero but higher likelihood far from
zero as seen in the picture below.

Side note: One way to see that one likelihood is not guaranteed to be larger than
the other is by 1) noticing that both the pdfs of values during the day and values
during the night integrate to 1 and 2) realizing that if one was always smaler than
the other, then that would bound the area under one of them to be smaller than
1, contradiction. e

ii.
√

True ⃝ False : Under the assumption that σday = 2σnight, adding three extra
copies of every nighttime reading and using the ordinary least squares solution will
have the same effect as directly optimizing the objective from part (a)

Solution: All we are looking to do in this problem is imitate a weighted OLS
objective with an unweighted OLS objective with modified data.
Looking at our LL objective derived in a), each datapoint’s contribution to the
loss is weighed by 1

σ2
datapoint

, so points with halved std (night observations) have 4

times the influence.
In order for us to weight the nighttime observations 4× without explicitly adding
weights, we just 4× each nighttime observation in our training data.
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(c) (7 points) Lane comes from the lab across the hall with an even more difficult problem.
They think that their output measurements would be exactly linear as a function of the
features if they could measure the features. But in their lab, there is error in the process
of sensing the features x. For simplicity, we’ll think just about the case where x is one-
dimensional. Then, an appropriate generative model is

y(i) = θ(x(i) + ϵi)

where the ϵi are i.i.d. across i with ϵi
iid
∼ N(0,σ2). Suppose σ2 is known.

It might be helpful to know that for a random variable X with mean µ and standard deviation σ,
the random variable Y = cX (for scalar constant c) has mean cµ and standard deviation cσ.
Derive a formula for the maximum likelihood estimator for θ, expressed as an argmin of
a formula involving σ, θ, and the data values.

Solution: We have
p(y | x) ∼ N(θx, θ2σ2)

Given a data set, our objective is to maximize the likelihood, or equivalently minimize
the negative log likelihood

θ̂ = argmin −

n∑
i=1

logp(y(i) | x(i))

= argminθ −

n∑
i=1

log
1√

2πσθ
exp

(
−

1
2σ2θ2 (θx

(i) − y(i))2
)

= argminθ

n∑
i=1

log(θ) +
1

2σ2θ2 (θx
(i) − y(i))2

= argminθ

(
n log(θ) +

1
2σ2θ2

n∑
i=1

(θx(i) − y(i))2

)
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Work space
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Work space
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